首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Functional magnetic resonance imaging (fMRI) has been applied to study the consequences of transient focal ischemia on neuronal excitability in the rat brain. The experimental paradigm consisted of measuring the changes in local cerebral blood volume (CBV) induced by systemic infusion of the GABA(A) antagonist bicuculline after occlusion of the middle cerebral artery (MCA) for durations of 5, 15, 30 and 60 min using the intraluminal thread model. fMRI studies were carried out 60 min after successful reperfusion of the ischemic territory. Bicuculline-induced dynamic changes in local CBV were assessed in three brain regions: Parietal cortex, caudate putamen and thalamus. The measured CBV response was negatively correlated with the ischemia duration. Additionally, the three regions showed different vulnerability to the transient MCA occlusion, caudate being the most susceptible followed by parietal cortex and thalamus. The fMRI signals weakly correlated with basal CBF and CBV following reperfusion. Our results indicate that fMRI is a sensitive method to assess functional integrity of the brain. Activation maps allow to quantitatively assess the functionally compromized territory at an early stage following the ischemic event prior to the manifestation of pathomorphological changes.  相似文献   

2.
Quantitative, multislice dynamic susceptibility contrast-enhanced MRI perfusion measurements were used to determine the patterns of cerebral blood flow (CBF), cerebral blood volume (CBV), mean transit time (MTT), and normalized first moment of the tissue deltaR2-time curve (N) in 11 subjects with carotid artery occlusion or stenosis. MTT correlated with degree of carotid stenosis, whereas a range of alterations in CBF and CBV were found presumably reflecting variables degrees of collateral flow. There was no significant correlation between MRI and SPET flow perfusion measurements, with increasing disparity between the two techniques at higher inter-hemispheric flow ratios. The effect of obtaining the arterial input function (AIF) from the middle cerebral artery (MCA) ipsilateral or contralateral to the stenosis was determined. Despite the use of an AIF from the MCA, which is distal to the circle of Willis, and hence the major sources of collateral supply, there was still some extra dispersion of the contrast agent bolus due to differences in arrival time.  相似文献   

3.
PurposeTo characterize the intracranial vascular features extracted from time of flight (TOF) images and their changes from baseline to follow-up in patients undergoing carotid revascularization, using arterial spin labeling (ASL) cerebral blood flow (CBF) measurement as a reference.MethodsIn this retrospective study, brain TOF and ASL images of 99 subjects, acquired before, within 48 h, and/or 6 months after, carotid revascularization surgery were analyzed. TOF images were analyzed using a custom software (iCafe) to quantify intracranial vascular features, including total vessel length, total vessel volume, and number of branches. Mean whole-brain CBF was calculated from ASL images. ASL scans showing low ASL signal in the entire flow territory of an internal carotid artery (ICA), which may be caused by labeling failure, were excluded. Changes and correlations between time points were analyzed separately for TOF intracranial vascular features and ASL CBF.ResultsSimilar to ASL CBF, TOF vascular features (i.e. total vessel length, total vessel volume and number of branches) increased dramatically from baseline to post-surgery, then returned to a level slightly higher than the baseline in long-term follow-up (All P < 0.05). Correlation between time points was observed for all three TOF vascular features but not for ASL CBF.ConclusionIntracranial vascular features, including total vessel length, total vessel volume and number of branches, extracted from TOF images are useful in detecting brain blood flow changes induced by carotid revascularization surgery.  相似文献   

4.

Background  

Protein kinase C (PKC) is known to be involved in the pathophysiology of experimental cerebral ischemia. We have previously shown that after transient middle cerebral artery occlusion, there is an upregulation of endothelin receptors in the ipsilateral middle cerebral artery. The present study aimed to examine the effect of the PKC inhibitor Ro-32-0432 on endothelin receptor upregulation, infarct volume and neurology outcome after middle cerebral artery occlusion in rat.  相似文献   

5.
The goal of this study was to optimize and validate a combined spin- and gradient-echo (SAGE) sequence for dynamic susceptibility-contrast magnetic resonance imaging to obtain hemodynamic parameters in a preclinical setting. The SAGE EPI sequence was applied in phantoms and in vivo rat brain (normal, tumor, and stroke tissue). Partial and full Fourier encoding schemes were implemented and characterized. Maps of cerebral blood volume (CBV), cerebral blood flow (CBF), mean transit time (MTT), vessel size index (VSI), volume transfer constant (Ktrans), and volume fraction of the extravascular extracellular space (ve) were obtained. Partial Fourier encoding provided shortened echo times with acceptable signal-to-noise ratio and temporal stability, thus enabling reliable characterization of T2, T2? and T1 in both phantoms and rat brain. The hemodynamic parameters CBV, CBF, and MTT for gradient-echo and spin-echo contrast were determined in tumor and stroke; VSI, Ktrans, and ve were also computed in tumor tissue. The SAGE EPI sequence allows the acquisition of multiple gradient- and spin-echoes, from which measures of perfusion, permeability, and vessel size can be obtained in a preclinical setting. Partial Fourier encoding can be used to minimize SAGE echo times and reliably quantify dynamic T2 and T2? changes. This acquisition provides a more comprehensive assessment of hemodynamic status in brain tissue with vascular and perfusion abnormalities.  相似文献   

6.
This study deals with perfusion quantification in healthy volunteers using two types of dynamic magnetic resonance imaging (MRI) methods. Absolute cerebral blood flow (CBF) measurements were performed in 11 subjects by applying both bolus tracking of exogenous contrast agent and non-invasive arterial spin labeling MRI techniques. Both methods produced CBF images with good tissue contrast and CBF values are in good agreement with literature data. The correlation between cerebral blood volume (CBV) and CBF is also discussed.  相似文献   

7.
PurposeTo investigate the feasibility for preoperative prediction of IDH mutation and MGMT promoter methylation status in glioblastomas(GBMs) by intravoxel incoherent motion(IVIM) and dynamic susceptibility contrast(DSC).MethodsPreoperative IVIM and DSC images of 71 patients(IDH mutation:45, IDH wildtype: 26; MGMT methylation: 31, MGMT unmethylation:40) with glioblastomas were analyzed retrospectively. Perfusion parameters including microcirculation perfusion coefficient(D*), perfusion fraction(f), cerebral blood volume(CBV) and cerebral blood flow(CBF) were measured. Corrected perfusion parameters containing corrected perfusion coefficient(ADCperf) and simplified perfusion fraction(SPF) were from the simplified IVIM with 3 b values. Correlations among parameters were analyzed by Spearman correlation. All parameters were compared with Mann-Whitney U test. Univariate and multivariate logistic regression models were constructed. The receiver operating characteristic(ROC) curve was analyzed.ResultsThe IVIM parameters showed merely moderate correlations with CBV and showed no correlation with CBF. IDH mutation GBMs showed lower D*, ADCperf, SPF, CBV and higher f than IDH wildtype GBMs(all p < 0.05). D* was the independent predictor for IDH mutation with the highest AUC of 0.912(95%CI: 0.821–0.966). The D*, ADCperf, SPF and CBV of MGMT promoter methylation GBMs were lower than unmethylation GBMs while f was higher(all p < 0.05). Multivariate model showed the highest prediction efficacy for MGMT promoter methylation with an AUC of 0.915(95%CI: 0.824–0.968). The CBF was not useful in distinguishing IDH mutation and MGMT promoter methylation status(p = 0.055, 0.215).ConclusionIDH mutation and MGMT promoter methylation status in GBMs can be assessed effectively by IVIM and DSC. Besides, D* was the independent predictor of IDH mutation status.  相似文献   

8.
BackgroundThe aim of this study was to investigate changes in structural magnetic resonance imaging (MRI) according to the RANO criteria and perfusion- and permeability related metrics derived from dynamic contrast-enhanced MRI (DCE) and dynamic susceptibility contrast MRI (DSC) during radiochemotherapy for prediction of progression and survival in glioblastoma.MethodsTwenty-three glioblastoma patients underwent biweekly structural and perfusion MRI before, during, and two weeks after a six weeks course of radiochemotherapy. Temporal trends of tumor volume and the perfusion-derived parameters cerebral blood volume (CBV) and blood flow (CBF) from DSC and DCE, in addition to contrast agent capillary transfer constant (Ktrans) from DCE, were assessed. The patients were separated in two groups by median survival and differences between the two groups explored. Clinical- and MRI metrics were investigated using univariate and multivariate survival analysis and a predictive survival index was generated.ResultsMedian survival was 19.2 months. A significant decrease in contrast-enhancing tumor size and CBV and CBF in both DCE- and DSC-derived parameters was seen during and two weeks past radiochemotherapy (p < 0.05). A 10%/30% increase in Ktrans/CBF two weeks after finishing radiochemotherapy resulted in significant shorter survival (13.9/16.8 vs. 31.5/33.1 months; p < 0.05). Multivariate analysis revealed an index using change in Ktrans and relative CBV from DSC significantly corresponding with survival time in months (r2 = 0.843; p < 0.001).ConclusionsSignificant temporal changes are evident during radiochemotherapy in tumor size (after two weeks) and perfusion-weighted MRI-derived parameters (after four weeks) in glioblastoma patients. While DCE-based metrics showed most promise for early survival prediction, a multiparametric combination of both DCE- and DSC-derived metrics gave additional information.  相似文献   

9.
The saturation-recovery (SR)-T1 MRI method for quantitatively imaging cerebral blood flow (CBF) change (ΔCBF) concurrently with the blood oxygenation level dependence (BOLD) alteration has been recently developed and validated by simultaneous measurement of relative CBF change using laser Doppler flowmetry (LDF) in rats at 9.4T. In this study, ΔCBF induced by mildly transient hypercapnia and measured by the SR-T1 MRI method was rigorously compared with an established perfusion MRI method—continuous arterial spin labeling (CASL) approach in normal and preclinical middle cerebral artery occlusion (MCAo) rat models. The results show an excellent agreement between ΔCBF values measured with these two imaging methods. Moreover, the intrinsic longitudinal relaxation rate (R1int) was experimentally determined in vivo in normal rat brains at 9.4T by comparing two independent measures of the apparent longitudinal relaxation rate (R1app) and CBF measured by the CSAL approach across a wide range of perfusion. In turn, the R1int constant can be employed to calculate the CBF value based on the R1app measurement in healthy brain. This comparison study validates the fundamental relationship for linking brain tissue water R1app and cerebral perfusion, demonstrates the feasibility of imaging and quantifying both CBF and its change using the SR-T1 MRI method in vivo.  相似文献   

10.
In this study we present a novel automated strategy for predicting infarct evolution, based on MR diffusion and perfusion images acquired in the acute stage of stroke. The validity of this methodology was tested on novel patient data including data acquired from an independent stroke clinic. Regions-of-interest (ROIs) defining the initial diffusion lesion and tissue with abnormal hemodynamic function as defined by the mean transit time (MTT) abnormality were automatically extracted from DWI/PI maps. Quantitative measures of cerebral blood flow (CBF) and volume (CBV) along with ratio measures defined relative to the contralateral hemisphere (r(a)CBF and r(a)CBV) were calculated for the MTT ROIs. A parametric normal classifier algorithm incorporating these measures was used to predict infarct growth. The mean r(a)CBF and r(a)CBV values for eventually infarcted MTT tissue were 0.70 +/- 0.19 and 1.20 +/- 0.36. For recovered tissue the mean values were 0.99 +/- 0.25 and 1.87 +/- 0.71, respectively. There was a significant difference between these two regions for both measures (p < 0.003 and p < 0.001, respectively). Mean absolute measures of CBF (ml/100g/min) and CBV (ml/100g) for the total infarcted territory were 33.9 +/- 9.7 and 4.2 +/- 1.9. For recovered MTT tissue, the mean values were 41.5 +/- 7.2 and 5.3 +/- 1.2, respectively. A significant difference was also found for these regions (p < 0.009 and p < 0.036, respectively). The mean measures of sensitivity, specificity, positive and negative predictive values for modeling infarct evolution for the validation patient data were 0.72 +/- 0.05, 0.97 +/- 0.02, 0.68 +/- 0.07 and 0.97 +/- 0.02. We propose that this automated strategy may allow possible guided therapeutic intervention to stroke patients and evaluation of efficacy of novel stroke compounds in clinical drug trials.  相似文献   

11.
ABSTRACT: BACKGROUND: There is growing evidence for the idea of fMRI activation in white matter. In the current study, we compared hemodynamic response functions (HRF) in white matter and gray matter using 4 T fMRI. White matter fMRI activation was elicited in the isthmus of the corpus callosum at both the group and individual levels (using an established interhemispheric transfer task). Callosal HRFs were compared to HRFs from cingulate and parietal activation. RESULTS: Examination of the raw HRF revealed similar overall response characteristics. Finite impulse response modeling confirmed that the WM HRF characteristics were comparable to those of the GM HRF, but had significantly decreased peak response amplitudes. CONCLUSIONS: Overall, the results matched a priori expectations of smaller HRF responses in white matter due to the relative drop in cerebral blood flow (CBF) and cerebral blood volume (CBV). Importantly, the findings demonstrate that despite lower CBF and CBV, white matter fMRI activation remained within detectable ranges at 4 T.  相似文献   

12.
The blood-oxygenation-level-dependent (BOLD) signal is an indirect hemodynamic signal that is sensitive to cerebral blood flow (CBF), cerebral blood volume (CBV) and cerebral metabolic rate of oxygen. Therefore, the BOLD signal amplitude and dynamics cannot be interpreted unambiguously without additional physiological measurements, and thus, there remains a need for a functional magnetic resonance imaging (fMRI) signal, which is more closely related to the underlying neuronal activity. In this study, we measured CBF with continuous arterial spin labeling, CBV with an exogenous contrast agent and BOLD combined with intracortical electrophysiological recording in the primary visual cortex of the anesthetized monkey. During inhalation of 6% CO2, it was observed that CBF and CBV are not further increased by a visual stimulus, although baseline CBF for 6% CO2 is below the maximal value of CBF. In contrast, the electrophysiological response to the stimulation was found to be preserved during hypercapnia. As a consequence, the simultaneously measured BOLD signal responds negatively to a visual stimulation for 6% CO2 inhalation in the same voxels responding positively during normocapnia. These observations suggest that the fMRI response to a sensory stimulus for 6% CO2 inhalation occurs in the absence of a hemodynamic response, and it therefore directly reflects oxygen extraction into the tissue.  相似文献   

13.
Li X  Tian J  Li E  Wang X  Dai J  Ai L 《Magnetic resonance imaging》2003,21(5):503-510
Absolute quantification of cerebral blood flow (CBF), cerebral blood volume (CBV), and mean transit time (MTT) are of great relevance for clinical applications. One of the widely used methods for quantification of these parameters is gamma-variate fitting. Traditional nonlinear regression methods for gamma-variate fitting are inaccurate and computationally demanding. In this study, we developed an adaptive total least square method (ATSSL) to fit a gamma-variate function to the delayed concentration-time course. For each concentration-time curve, the beginning and ending time point of the curve are adaptively determined online. After the curves were fitted, a robust method for automatically determination of arterial input function (AIF) from whole and region of interest (ROI) was developed. Using the obtained AIF and fitted gamma-variate concentration-time curve, the MTT, CBV, and CBF were calculated by utilizing singular value decomposition algorithm. Computer simulations show that the suggested method is adaptive, reliable, and insensitive to noise. Comparison with the traditional nonlinear regression method indicated that the presented method is more accurate and faster to determine the CBV, CBF and MTT.  相似文献   

14.
Dynamic contrast-enhanced magnetic resonance imaging (MRI) is widely used for measuring perfusion and blood volume, especially cerebral blood volume (CBV). In case of blood-brain barrier (BBB) disruption, the conventional techniques only partially determine the pharmacokinetic parameters of contrast medium (CM) exchange between different compartments. Here a modified pharmacokinetic model is applied, which is based on the bidirectional CM exchange between blood and two interstitial compartments in terms of the fractional volumes of the compartments and the vessel permeabilities between them. The evaluation technique using this model allows one to quantify the fractional volumes of the different compartments (blood, cells, slowly and fast enhancing interstitium) as well as the vessel permeabilities and cerebral blood flow (CBF) with a single T1-weighted dynamic MRI measurement. The method has been successfully applied in 25 glioma patients for generating maps of all of these parameters. The fractional volume maps allow for the differentiation of glioma vascularization types. The maps show a good correlation with the histological grading of these tumors. Furthermore, regions with enhanced interstitial volumes are found in high-grade gliomas. Differences in permeability maps of Gd-DTPA apart from BBB disruption do not exist between different tissue types. CBF measured in high-grade glioma is less pronounced than it would be expected from their blood volume. Therefore pharmacokinetic imaging provides an additional tool for glioma characterization.  相似文献   

15.
The purpose of this project was to assess the reliability of the cerebral mean transit time (MTT) obtained using perfusion-weighted MR imaging by comparing it with the MTT obtained when performing positron emission tomography (PET). Ten patients with chronic occlusive cerebrovascular disease were investigated. They had either unilateral internal carotid artery occlusion or middle cerebral artery occlusion. The regions-of-interest were placed in non-infarcted areas within the territory of the middle cerebral artery on the affected side. Control regions-of-interest were placed in mirrored regions of the contralateral side. Linear regression analyses were performed using the parameters of the MTT obtained with perfusion-weighted MR imaging and the MTT, cerebral blood flow, vascular reactivity, and oxygen extraction fraction obtained with PET. The respective MTTs of the affected and non-affected sides obtained with perfusion-weighted MR imaging versus those with PET were 7.3 +/- 2.2 s and 6.0 +/- 1.2 s versus 8.2 +/- 3.0 s and 6.4 +/- 1.7 s. The MTT obtained using perfusion-weighted MR imaging and PET demonstrated statistically significant correlation (r = 0.87, p < 0.0001). The MTT obtained with perfusion-weighted MR imaging correlated statistically with cerebral blood flow (r = -0.74, p < 0.001), vascular reactivity (r = -0.73, p < 0.001) and oxygen extraction fraction (r = 0.61, p < 0.01). Similarly, the MTT obtained using PET statistically correlated with cerebral blood flow (r = -0.78, p < 0.0001), vascular reactivity (r = -0.51, p < 0.05) and oxygen extraction fraction (r = 0.68, p < 0.01). The reliability of the MTT obtained using perfusion-weighted MR imaging appears to be approximately equal to that obtained with positron emission tomography.  相似文献   

16.
The cerebral blood flow (CBF) is an important vital parameter in neurointensive care. Currently, there is no non-invasive method for its measurement that can easily be applied at the bedside. A new tool to determine CBF is based on near-infrared spectroscopy (NIRS) applied together with indocyanine green (ICG) dye dilution. From a bilateral measurement on selected regions on the head of infrared (IR) absorption at various wavelengths during the dilution maneuver, the vascular perfusion characteristics of the two brain hemispheres can be determined in terms of mean transit time (mtt) of ICG, cerebral blood volume (CBV) and CBF. So far, on nine healthy volunteers, NIRS ICG dye dilution bihemispheric measurements were performed, which yielded to mtt given as median (range) of 9.3 s (5.1–16.3 s), CBV of 3.5 ml/100 g (1.7–4.1 ml/100 g), and CBF of 18.2 ml/(100 g×min) [11.1–48.6 ml/(100 g×min)]. Additionally, the blood flow index (BFI) was calculated with BFI= 13.8 mg/(100 g×s) [6.6–15.2 mg/(100 g×s)]. The Spearman rank correlation coefficient between CBF and BFI was RS = 0.76. However, as the Bland & Altman plot between CBFNIRS and the CBFBFI documents, the limits of agreement are rather wide (21.9±6.7). Under physiological conditions in healthy volunteers, no differences could be detected between the hemispheres.  相似文献   

17.
利用功能近红外光谱技术(functionality near infrared spectroscopy,fNIRs)探索帕金森病(parkin-son's disease,PD)大鼠模型的脑组织功能特性.通过小动物磁共振(magnetic resonance imaging,MRI)和电子计算机断层扫描(computed tomography,CT)对PD大鼠模型进行影像学研究,用fNIRs系统测试大鼠模型脑组织纹状体特征参数.实验结果表明,PD大鼠脑部没有明显的形态结构变化;优化散射系数(reduced scattering coefficient:μ's)、脑血容量(cerobral bloodvolume:CBV)在PD大鼠的纹状体部与对照组间存在显著的差别;fNIRs测量参数(μ's、CBV)与CT灌注(CTP)测定参数[CBF(cerebral blood flow),CBV]之间存在相关性.这些结果表明fNIRs可以作为PD研究的重要参考手段.  相似文献   

18.
Pharmacological MRI (phMRI) methods have been widely applied to assess the central hemodynamic response to pharmacological intervention as a surrogate for changes in the underlying neuronal activity. However, many psychoactive drugs can also affect cardiovascular parameters, including arterial blood pressure (BP). Abrupt changes in BP or the anesthetic agents used in preclinical phMRI may impair cerebral blood flow (CBF) autoregulation mechanisms, potentially introducing confounds in the phMRI response. Moreover, relative cerebral blood volume (rCBV), often measured in small-animal phMRI studies, may be sensitive to BP changes even in the presence of intact autoregulation. We applied laser Doppler flowmetry and MRI to measure changes in CBF and microvascular CBV induced by increasing doses of intravenous norepinephrine (NE) challenge in the halothane-anesthetized rat. NE is a potent vasopressor that does not cross the blood-brain barrier and mimics the rapid BP changes typically observed with acute drug challenges. We found that CBF autoregulation was maintained over a BP range of 60-120 mmHg. Under these conditions, no significant central rCBV responses were observed, suggesting that microvascular rCBV changes in response to abrupt changes in perfusion pressure are negligible within the autoregulatory range. Larger BP responses were accompanied by significant changes in both CBV and CBF that might confound the interpretation of phMRI results.  相似文献   

19.
Three-dimensional time-of-flight high-resolution magnetic resonance angiography was applied to visualize the cerebral vasculature of the mouse brain. In normal mice, angiograms of good quality, showing the essential details of the arterial cerebrovascular anatomy, could be obtained in only 2.5 min without the use of contrast agents. Signals from slowly flowing blood, e.g., in veins, could also be detected after administration of a blood pool contrast agent. The technique was applied to mouse models of permanent and transient brain ischemia, involving the occlusion of the middle cerebral artery. High-resolution magnetic resonance angiography proved to be a very useful tool for verifying the success of the occlusion in these models.  相似文献   

20.

Background

Late cerebral ischemia carries high morbidity and mortality after subarachnoid hemorrhage (SAH) due to reduced cerebral blood flow (CBF) and the subsequent cerebral ischemia which is associated with upregulation of contractile receptors in the vascular smooth muscle cells (SMC) via activation of mitogen-activated protein kinase (MAPK) of the extracellular signal-regulated kinase (ERK)1/2 signal pathway. We hypothesize that SAH initiates cerebrovascular ERK1/2 activation, resulting in receptor upregulation. The raf inhibitor will inhibit the molecular events upstream ERK1/2 and may provide a therapeutic window for treatment of cerebral ischemia after SAH.

Results

Here we demonstrate that SAH increases the phosphorylation level of ERK1/2 in cerebral vessels and reduces the neurology score in rats in additional with the CBF measured by an autoradiographic method. The intracisternal administration of SB-386023-b, a specific inhibitor of raf, given 6 h after SAH, aborts the receptor changes and protects the brain from the development of late cerebral ischemia at 48 h. This is accompanied by reduced phosphorylation of ERK1/2 in cerebrovascular SMC. SAH per se enhances contractile responses to endothelin-1 (ET-1), 5-carboxamidotryptamine (5-CT) and angiotensin II (Ang II), upregulates ETB, 5-HT1B and AT1 receptor mRNA and protein levels. Treatment with SB-386023-b given as late as at 6 h but not at 12 h after the SAH significantly decreased the receptor upregulation, the reduction in CBF and the neurology score.

Conclusion

These results provide evidence for a role of the ERK1/2 pathway in regulation of expression of cerebrovascular SMC receptors. It is suggested that raf inhibition may reduce late cerebral ischemia after SAH and provides a realistic time window for therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号