首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《中国化学快报》2023,34(6):107893
Rational regulation of stable graphitic carbon nitride (CN) for superior peroxymonosulfate (PMS) activation is important in the catalytic degradation of water contaminants. In this work, the copper oxide and oxygen co-doped graphitic carbon nitride (CuO/O-CN) was prepared via one-step synthesis and applied in activating PMS for oxytetracycline (OTC) degradation, displaying superior catalytic performance. Systematic characterization and theoretical calculations indicated that the synergistic effect between the oxygen site of CN and CuO can modulate the electronic structure of the whole composite further facilitating the formation of non-radical 1O2 and various reactive radicals. Results of the influencing factor experiments revealed that CuO/O-CN has a strong resistance to the environmental impact. The degradation efficiency of OTC in the real water environment even exceeded that in the deionized water. After four successive runs of the optimal catalyst, the OTC removal rate was still as high as 91.3%. This work developed a high-efficiency PMS activator to remove refractory pollutants via both radical pathway and non-radical pathway, which showed a promising potential in the treatment of wastewaters.  相似文献   

2.
Conventional methods employed today for the synthesis of amides often lack of economic and environmental sustainability. Triazine-derived quaternary ammonium salts, e.g., 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMTMM(Cl)), emerged as promising dehydro-condensation agents for amide synthesis, although suffering of limited stability and high costs. In the present work, a simple protocol for the synthesis of amides mediated by 2-chloro-4,6-dimethoxy-1,3,5-triazine (CDMT) and a tert-amine has been described and data are compared to DMTMM(Cl) and other CDMT-derived quaternary ammonium salts (DMT-Ams(X), X: Cl or ClO4). Different tert-amines (Ams) were tested for the synthesis of various DMT-Ams(Cl), but only DMTMM(Cl) could be isolated and employed for dehydro-condensation reactions, while all CDMT/tert-amine systems tested were efficient as dehydro-condensation agents. Interestingly, in best reaction conditions, CDMT and 1,4-dimethylpiperazine gave N-phenethyl benzamide in 93% yield in 15 min, with up to half the amount of tert-amine consumption. The efficiency of CDMT/tert-amine was further compared to more stable triazine quaternary ammonium salts having a perchlorate counter anion (DMT-Ams(ClO4)). Overall CDMT/tert-amine systems appear to be a viable and more economical alternative to most dehydro-condensation agents employed today.  相似文献   

3.
以硝酸铜为铜源,六次甲基四胺为有机碱,去离子水为溶剂,采用简捷水浴加热技术控制合成了由三角纳米片组成的蝴蝶状微结构CuO。产品的组成和形貌用XRD、EDX、场发射扫描电镜(FESEM)、TEM、HRTEM和选区电子衍射(SAED)进行了表征。结果表明CuO的形貌主要受六次甲基四胺用量的影响。随着其用量的增加,CuO的形貌经历了飞鱼状-蝴蝶状-牡丹状的递变。并对蝴蝶状CuO微结构的形成机制及形貌的演变进行了探讨。  相似文献   

4.
(Copper signals from seawater matrices in electrothermal atomic absorption spectrometry. Part 1: study of the effects of principal inorganic ions.)The effects of the main inorganic ions of seawater (Na+, Mg2+, Ca2+, Cl?, SO2?4), and of nitrate as modifier, on the electrothermal atomic absorption spectrometric signal of copper are studied. Sodium chloride, sulfate or nitrate, magnesium chloride or nitrate, and calcium chloride can cause serious interferences. Thermal treatment at about 700°C prevents the interference of MgCl2 by its hydrolysis. Ashing can be done without loss of copper at higher temperatures in the presence of sulfate salts (1300°C) and nitrate salts (1200°C) than in the presence of chloride salts (1100°C). This is ascribed to the stabilising effect of oxides and sulfides. A study of the influence of two-component matrices, MCl-MNO3 or MCl-MSO4, on the atomization signal of copper confirms this stabilizing effect which adds to the decrease in interference connected with removal of chloride in acidic medium.  相似文献   

5.
The new symmetric acyclic N,N’-bis(1-pyrenyl) squaramide (H2L) functionalized with the pyrene moiety as a fluorogenic fragment has been designed and its ability to selectively detect specific anions and metals investigated. H2L selectively binds Cl both in solution (DMSO 0.5% H2O and MeCN) and in the solid state, and allows to selectively detect Cu2+ in MeCN with the formation of a 2:1 metal-receptor complex, with a green intense emission appreciable by naked eye under the UV lamp. The H2L copper complex preserves its emission properties in the presence of Cl. The addition of basic anions (OH, CN, and F) up to 10 equivalents caused the deprotonation of the squaramide NHs and a dramatic change of the emission properties of the H2L copper complex.  相似文献   

6.
The crystal structures of three copper(II) complexes of pyridine-2,6-dithiocarbomethylamide (P DT A) were determined by X-ray crystallographic methods. The structure of the bromide CuP DT ABr2 · H2O (2) is isomorphous to the known crystal structure of the chloride CuP DT ACl2 · H2O (1). The iodide CuP DT AI2 ·D M F (3) is non-isomorphous to the other two halogenides, but shows a very similar square-pyramidal 5-coordination of the copper atom. In contrast to the halogenides, the crystal structure of the nitrate CuP DT A (H2O)2 · (NO3)2 (4) shows a square planar metal coordination by theP DT A ligand and one water molecule. If one includes the second water molecule and one oxygen atom of a nitrate ion, the metal coordination becomes distorted octahedral.  相似文献   

7.
The presence of carcinogenic bromate (BrO3) in drinking water became a global concern and efforts towards its removal mainly focused on addressing the source. Herein, we rationally designed a porphyrin-based covalent organic framework (PV-COF) with a cationic surface to provide electrostatic interactions and a porphyrin core to induce hydrogen bonding interactions for the efficient removal of BrO3 from water. Through H-bonding and electrostatic interactions, PV-COF exhibited an exceptional bromate removal efficiency (maximum adsorption capacity, Qmax: 203.8 mg g−1) with the fastest uptake rate (kads) of 191.45 g mg−1 min−1. The bromate concentration was reduced to far below the allowed concentration in drinking water (10 ppb) within 20 minutes. We studied the relationship between bromate adsorption and COF surface modification by metalation of the porphyrinic core or neutralization of the viologen linkers by chemical reduction. The bromate adsorption mechanism was studied by EDAX mapping and molecular simulations, and it was found that ion exchange and hydrogen bonding formation drive the adsorption. Importantly, PV-COF could be easily recycled several times without compromising its adsorption efficiency.

A cationic COF removes carcinogenic bromate with a remarkable rate constant of 191.45 g mg−1 min−1.  相似文献   

8.
The Cu/ZSM-5 catalysts prepared by different copper precursors were used for the selective catalytic reduction (SCR) of NO x with NH3. The Cu/ZSM-5 catalyst prepared by the copper nitrate (Cu/ZSM-5-N) presented the best performance among the Cu/ZSM-5 catalysts and showed above 90 % NO x conversion at 225–405 °C. The average particle size of CuO was 5.82, 9.20, and 11.01 nm over Cu/ZSM-5-N, Cu/ZSM-5-S (prepared by copper sulfate), and Cu/ZSM-5-C (prepared by copper chloride), respectively. The Cu/ZSM-5-N catalyst showed the highly dispersed copper species, the strong surface acidity, and the excellent redox ability compared with the Cu/ZSM-5-C and Cu/ZSM-5-S catalysts. The Cu+ and Cu2+ existed in the Cu/ZSM-5 catalysts and the abundant Cu+ over Cu/ZSM-5-N might be responsible for the superior SCR activity.  相似文献   

9.
A direct, reagent-free, ultraviolet spectroscopic method for the simultaneous determination of nitrate (NO3), nitrite (NO2), and salinity in seawater is presented. The method is based on measuring the absorption spectra of the raw seawater range of 200–300 nm, combined with partial least squares (PLS) regression for resolving the spectral overlapping of NO3, NO2, and sea salt (or salinity). The interference from chromophoric dissolved organic matter (CDOM) UV absorbance was reduced according to its exponential relationship between 275 and 295 nm. The results of the cross-validation of calibration and the prediction sets were used to select the number of factors (4 for NO3, NO2, and salinity) and to optimize the wavelength range (215–240 nm) with a 1 nm wavelength interval. The linear relationship between the predicted and the actual values of NO3, NO2, salinity, and the recovery of spiked water samples suggest that the proposed PLS model can be a valuable alternative method to the wet chemical methods. Due to its simplicity and fast response, the proposed PLS model can be used as an algorithm for building nitrate and nitrite sensors. The comparison study of PLS and a classic least squares (CLS) model shows both PLS and CLS can give satisfactory results for predicting NO3 and salinity. However, for NO2 in some samples, PLS is superior to CLS, which may be due to the interference from unknown substances not included in the CLS algorithm. The proposed method was applied to the analysis of NO3, NO2, and salinity in the Changjiang (Yangtze River) estuary water samples and the results are comparable with that determined by the colorimetric Griess assay.  相似文献   

10.
The oxidation of transition metals such as manganese and copper by dioxygen (O2) is of great interest to chemists and biochemists for fundamental and practical reasons. In this report, the O2 reactivities of 1:1 and 1:2 mixtures of [(TPP)MnII] (1; TPP: Tetraphenylporphyrin) and [(tmpa)CuI(MeCN)]+ (2; TMPA: Tris(2-pyridylmethyl)amine) in 2-methyltetrahydrofuran (MeTHF) are described. Variable-temperature (−110 °C to room temperature) absorption spectroscopic measurements support that, at low temperature, oxygenation of the (TPP)Mn/Cu mixtures leads to rapid formation of a cupric superoxo intermediate, [(tmpa)CuII(O2•–)]+ (3), independent of the presence of the manganese porphyrin complex (1). Complex 3 subsequently reacts with 1 to form a heterobinuclear μ-peroxo species, [(tmpa)CuII–(O22–)–MnIII(TPP)]+ (4; λmax = 443 nm), which thermally converts to a μ-oxo complex, [(tmpa)CuII–O–MnIII(TPP)]+ (5; λmax = 434 and 466 nm), confirmed by electrospray ionization mass spectrometry and nuclear magnetic resonance spectroscopy. In the 1:2 (TPP)Mn/Cu mixture, 4 is subsequently attacked by a second equivalent of 3, giving a bis-μ-peroxo species, i.e., [(tmpa)CuII−(O22−)−MnIV(TPP)−(O22−)−CuII(tmpa)]2+ (7; λmax = 420 nm and δpyrrolic = −44.90 ppm). The final decomposition product of the (TPP)Mn/Cu/O2 chemistry in MeTHF is [(TPP)MnIII(MeTHF)2]+ (6), whose X-ray structure is also presented and compared to literature analogs.  相似文献   

11.
Isotherms of copper cation sorption by H-ZSM-5 zeolite from aqueous and aqueous ammonia solutions of copper acetate, chloride, nitrate, and sulfate are considered in terms of Langmuir’s monomolecular adsorption model. Using UV-Vis diffuse reflectance spectroscopy, IR spectroscopy, and temperatureprogrammed reduction with hydrogen and carbon monoxide, it has been demonstrated that the electronic state of the copper ions is determined by the ion exchange and heat treatment conditions. The state of the copper ions has an effect on the redox properties and reactivity of the Cu-ZSM-5 catalysts in the selective catalytic reduction (SCR) of NO with propane and in N2O decomposition. The amount of Cu2+ that is sorbed by zeolite H-ZSM-5 from aqueous solution and is stabilized as isolated Cu2+ cations in cationexchange sites of the zeolite depends largely on the copper salt anion. The quantity of Cu(II) cations sorbed from aqueous solutions of copper salts of strong acids is smaller than the quantity of the same cations sorbed from the copper acetate solution. When copper chloride or sulfate is used, the zeolite is modified by the chloride or sulfate anion. Because of the presence of these anions, the redox properties and nitrogen oxides removal (DeNO x ) efficiency of the Cu-ZSM-5 catalysts prepared using the copper salts of strong acids are worse than the same characteristics of the sample prepared using the copper acetate solution. The addition of ammonia to the aqueous solutions of copper salts diminishes the copper salt anion effect on the amount of Cu(II) sorbed from these solutions and hampers the nonspecific sorption of anions on the zeolite surface. As a consequence, the redox and DeNO x properties of Cu-ZSM-5 depend considerably on the NH4OH/Cu2+ ratio in the solution used in ion exchange. The aqueous ammonia solutions of the copper salts with NH4OH/Cu2+ = 6–10 stabilize, in the Cu-ZSM-5 structure, Cu2+ ions bonded with extraframework oxygen, which are more active in DeNO x than isolated Cu2+ ions (which form at NH4OH/Cu2+ = 30) or nanosized CuO particles (which form at NH4OH/Cu2+ = 3).  相似文献   

12.
A spectroscopic investigation of the products formed in the reaction of emeraldine base (EB-PANI) with copper(II) ions in dimethylacetamide (DMA) is presented. It is well known that metal cations can dope emeraldine base polyaniline (EB-PANI) through a pseudo-protonation reaction. Resonance Raman, UV–vis-NIR, and EPR data, obtained for Cu2+/EB-PANI solutions prepared using CuCl2·2 H2O, Cu(NO3)2· 3 H2O or Cu(CH3COO)2·H2O as Cu2+ sources, showed that the species formed in reactions of EB-PANI and Cu2+ ions are dependent on the anions of the copper salt employed. EPR spectra pointed out that the environments of Cu2+ ions with acetate, chloride or nitrate as anions in DMA solution are distinct. Resonance Raman and UV–vis-NIR data demonstrated that the main reactions are the oxidation of EB-PANI to pernigraniline base (PB-PANI) and doping of EB-PANI to ES-PANI (emeraldine salt) when a direct coordination of Cu2+ ions to PANI exists. With nitrate as very weak coordinating anion, ES-PANI is formed preferentially. When copper chloride is used, both oxidation and doping of EB-PANI are verified. Conversely with acetate, the dimeric cage structure of this copper salt is preserved in solution, and oxidation of EB-PANI to PB-PANI is the only observed reaction. These results demonstrate the possibility of modulating the products of reaction between Cu2+ ions and EB-PANI in DMA solution by changing the counter ion of the Cu2+ source.  相似文献   

13.
We characterized the stationary points along the nucleophilic substitution (SN2), oxidative insertion (OI), halogen abstraction (XA), and proton transfer (PT) product channels of M + CH3X (M = Cu, Ag, Au; X = F, Cl, Br, I) reactions using the CCSD(T)/aug-cc-pVTZ level of theory. In general, the reaction energies follow the order of PT > XA > SN2 > OI. The OI channel that results in oxidative insertion complex [CH3–M–X] is most exothermic, and can be formed through a front-side attack of M on the C-X bond via a high transition state OxTS or through a SN2-mediated halogen rearrangement path via a much lower transition state invTS. The order of OxTS > invTS is inverted when changing M to Pd, a d10 metal, because the symmetry of their HOMO orbital is different. The back-side attack SN2 pathway proceeds via typical Walden-inversion transition state that connects to pre- and post-reaction complexes. For X = Cl/Br/I, the invSN2-TS’s are, in general, submerged. The shape of this M + CH3X SN2 PES is flatter as compared to that of a main-group base like F + CH3X, whose PES has a double-well shape. When X = Br/I, a linear halogen-bonded complex [CH3−X∙··M] can be formed as an intermediate upon the front-side attachment of M on the halogen atom X, and it either dissociates to CH3 + MX through halogen abstraction or bends the C-X-M angle to continue the back-side SN2 path. Natural bond orbital analysis shows a polar covalent M−X bond is formed within oxidative insertion complex [CH3–M–X], whereas a noncovalent M–X halogen-bond interaction exists for the [CH3–X∙··M] complex. This work explores competing channels of the M + CH3X reaction in the gas phase and the potential energy surface is useful in understanding the dynamic behavior of the title and analogous reactions.  相似文献   

14.
In order to investigate the effect of counter‐anions on the polymeric structure of (2,2‐dimethylpropane‐1,3‐diyl diisocyanide)silver(I) complexes, the novel title polymeric compound, [Ag(NO3)(C7H10N2)]n, has been synthesized. The crystal structure was determined by simulated annealing from X‐ray powder diffraction data collected at room temperature. The current structure is similar to the recently reported structure of the analogue with chloride replacing nitrate. This study illustrates that both the chloride and nitrate complexes crystallize in the orthorhombic system in the Pbca space group with one monomer in the asymmetric unit, and also gives a strong indication that the counter‐anion does not have a considerable effect on the polymeric structure of the complex. The Ag centre lies in a distorted tetrahedral environment and is bonded to two 2,2‐dimethylpropane‐1,3‐diyl diisocyanide ligands to form chains. The nitrate anions crosslink the Ag centres of the chains to form a two‐dimensional polymeric network structure.  相似文献   

15.
《Comptes Rendus Chimie》2015,18(10):1013-1029
In this paper, SBA-15 mesoporous silica based adsorbents were synthesized for the desulfurization of flue gas streams, by several methods (wet impregnation, incipient wetness impregnation and ion exchange). The influence of the drying and calcination conditions on the porous texture and the dispersion of the active phase (CuO), as well as the efficiency of the adsorbents for SOx trapping, were studied. Depending on the synthesis conditions, copper species are present as large CuO particles (1 μm) and/or as homogeneously dispersed species, undetectable by XRD/TEM. The SOx adsorption efficiency seems to be closely related to the undetected copper species.  相似文献   

16.
Porous copper oxide (CuO) hollow microspheres have been fabricated through a simple hydrothermal method using PS latex as templates. The as-obtained samples were characterized by means of scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffractometry (XRD) and Fourier transform infrared spectroscopy (FTIR). The influences of the mole ratio of Ethylenediamine (C2H8N2) and copper acetate (Cu(Ac)2·H2O), hydrothermal temperature and time on the size and morphologies of the final products have been investigated. The possible formation mechanism of porous CuO hollow microspheres has been proposed and the specific surface area of the hollow microspheres with 81.71 m2/g is measured by BET method. The band gap value calculated from a UV–vis absorption spectrum of porous CuO hollow microspheres is 2.71 eV. The as-synthesized product exhibits high photocatalytic activity during the photodegradation of an organic dyestuff, rhodamine B (RhB), under UV-light illumination.  相似文献   

17.
CeO2 nanoparticles have been proven to be competent photocatalysts for environmental applications because of their strong redox ability, nontoxicity, long-term stability, and low cost. We have synthesized CeO2 nanoparticles via solution combustion method using ceric ammonium nitrate as an oxidizer and ethylenediaminetetraacetic acid (EDTA) as fuel at 450 °C. These nanoparticles exhibit good photocatalytic degradation and antibacterial activity. The obtained product was characterized by various techniques. X-ray diffraction data confirms a cerianite structure: a cubic phase CeO2 having crystallite size of 35 nm. The infrared spectrum shows a strong band below 700 cm−1 due to the Ce−O−Ce stretching vibrations. The UV/Vis spectrum shows maximum absorption at 302 nm. The photoluminescence spectrum shows characteristic peaks of CeO2 nanoparticles. Scanning electron microscopy (SEM) images clearly show the presence of a porous network with a lot of voids. From transmission electron microscopy (TEM) images, it is clear that the particles are almost spherical, and the average size of the nanoparticles is found to be 42 nm. CeO2 nanoparticles exhibit photocatalytic activity against trypan blue at pH 10 in UV light, and the reaction follows pseudo first-order kinetics. Finally, CeO2 nanoparticles also reduce CrVI to CrIII and show antibacterial activity against Pseudomonas aeruginosa.  相似文献   

18.
An alkylamide-substituted (−NHCOC10H21) hydrogen-bonded dibenzo[18]crown-6 derivative (1) was prepared to stabilise the ionic channel structure in a discotic hexagonal columnar (Colh) liquid crystal. The introduction of simple M+X salts such as Na+PF6 and K+I into the ionic channel of 1 enhanced the ionic conductivity of the Colh phase of the M+·(1)·X salts, with the highest ionic conductivity reaching ∼10−6 S cm−1 for K+·(1)·I and Na+·(1)·PF6 at 460 K, which was approximately 5 orders of magnitude higher than that of 1. The introduction of non-ferroelectric 1 into the ferroelectric N,N′,N′′-tri(tetradecyl)-1,3,5-benzenetricarboxamide (3BC) elicited a ferroelectric response from the mixed Colh phase of (3BC)x(1)1−x with x = 0.9 and 0.8. The further doping of M+X into the ferroelectric Colh phase of (3BC)0.9(1)0.1 enhanced the ferroelectric polarisation assisted by ion displacement in the half-filled ionic channel for the vacant dibenzo[18]crown-6 of (3BC)0.9[(M+)0.5·(1)·(X)0.5]0.1.

An alkylamide-substituted (−NHCOC10H21) hydrogen-bonded dibenzo[18]crown-6 derivative (1) was prepared to stabilise the ionic channel structure in a discotic hexagonal columnar (Colh) liquid crystal.  相似文献   

19.
Alcohol/nonionic polymeric surfactant assisted, morphologically controlled synthesis is developed for micro-/nanostructured crystalline copper oxide. Materials were characterized by a complementary combination of X-ray diffraction (XRD), nitrogen sorption, scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) and UV-visible spectroscopy. XRD and FT-IR confirm the formation of a mixture of Cu(OH)2 and CuO after 0.5 h of hydrothermal treatment and pure CuO after 2 h of hydrothermal treatment. The formation mechanisms were proposed based on the SEM and TEM analysis, which show that both, alcohol/polymeric surfactant and hydrothermal time play an important role in tuning the morphology and structure of CuO. Surface area of metal oxides depends on the alcohols and the nonionic polymeric surfactants used in the synthesis. Surface area of CuO synthesized using methanol was found to be the highest. The catalytic activity of as-synthesized CuO was demonstrated by using three-component coupling reaction in the synthesis of propargylamine and catalytic oxidation of methylene blue in the presence of hydrogen peroxide. Among the CuO prepared in this study, the CuO synthesized using methanol exhibited better catalytic activity (propargylamine yield (64.5%)) and the highest rate of methylene blue degradation (13 × 10−3 min−1).  相似文献   

20.
Three mononuclear copper(II) complexes of copper nitrate with 2, 6‐bis(pyrazol‐1‐yl)pyridine ( bPzPy ) and 2, 6‐bis(3′,5′‐dimethylpyrazol‐1‐yl)pyridine ( bdmPzPy ), [Cu(bPzPy)(NO3)2] ( 1 ), [Cu(bPzPy)(H2O)(NO3)2] ( 2 ) and [Cu(bdmPzPy)(NO3)2] ( 3 ) were synthesized by the reaction of copper nitrate with the ligand in ethanol solution. The complexes have been characterized through analytical, spectroscopic and EPR measurements. Single crystal X‐ray structure analysis of complexes 1 and 2 revealed a five‐coordinate copper atom in 1 , whereas 2 contains a six‐coordinate (4+2) CuII ion with molecular units acting as supramolecular nodes. These neutral nodes are connected through O–H ··· O(nitrate) hydrogen bonds to give couples of parallel linear strips assembled in 1D‐chains in a zipper‐like motif.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号