首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary. Considered are Hankel, Vandermonde, and Krylov basis matrices. It is proved that for any real positive definite Hankel matrix of order , its spectral condition number is bounded from below by . Also proved is that the spectral condition number of a Krylov basis matrix is bounded from below by . For , a Vandermonde matrix with arbitrary but pairwise distinct nodes , we show that ; if either or for all , then . Received January 24, 1993/Revised version received July 19, 1993  相似文献   

2.
A reduced order model is developed for low frequency, undamped, fully coupled structural–acoustic analysis of interior cavities backed by flexible structural systems. The reduced order model is obtained by applying a projection of the coupled system matrices, from a higher dimensional to a lower dimensional subspace, whilst preserving essential properties of the coupled system. The basis vectors for projection are computed efficiently using the Arnoldi algorithm, which generates an orthogonal basis for the Krylov Subspace containing moments of the original system. The key idea of constructing a reduced order model via Krylov Subspaces is to remove the uncontrollable, unobservable and weakly controllable, observable parts without affecting the transfer function of the coupled system. Three computational test cases are analyzed, and the computational gains and the accuracy compared with the direct inversion method in ANSYS.  相似文献   

3.
Malte Rösner  Rolf Lammering 《PAMM》2012,12(1):709-710
Model order reduction (MOR) is commonly used to approximate large-scale linear time-invariant dynamical systems. A new feed unit based on a compliant mechanism consisting of flexure hinges can be described by a discrete system of n ordinary differential equations. A projection framework using modal and Krylov subspace techniques is applied to reduce the order of the system to lower computational cost and make the model feasible for control, analysis and optimization. Single flexure hinges are investigated numerical, analytical and experimental and compared to reduced models via modal and tangential Krylov subspace methods regarding the first eigenfrequency. (© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
We show that extended Hamiltonian Hessenberg matrices arise naturally in projection-based model order reduction. Therefore we reduce a large dynamical system by projecting it on an extended Krylov subspace. The eigenvalues of the reduced order model can then be computed directly by applying the extended Hamiltonian QR algorithm. (© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
By introducing a variable substitution, we transform the two‐point boundary value problem of a third‐order ordinary differential equation into a system of two second‐order ordinary differential equations (ODEs). We discretize this order‐reduced system of ODEs by both sinc‐collocation and sinc‐Galerkin methods, and average these two discretized linear systems to obtain the target system of linear equations. We prove that the discrete solution resulting from the linear system converges exponentially to the true solution of the order‐reduced system of ODEs. The coefficient matrix of the linear system is of block two‐by‐two structure, and each of its blocks is a combination of Toeplitz and diagonal matrices. Because of its algebraic properties and matrix structures, the linear system can be effectively solved by Krylov subspace iteration methods such as GMRES preconditioned by block‐diagonal matrices. We demonstrate that the eigenvalues of certain approximation to the preconditioned matrix are uniformly bounded within a rectangle on the complex plane independent of the size of the discretized linear system, and we use numerical examples to illustrate the feasibility and effectiveness of this new approach. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
In this work, we propose a new method, termed as R‐CORK, for the numerical solution of large‐scale rational eigenvalue problems, which is based on a linearization and on a compact decomposition of the rational Krylov subspaces corresponding to this linearization. R‐CORK is an extension of the compact rational Krylov method (CORK) introduced very recently in the literature to solve a family of nonlinear eigenvalue problems that can be expressed and linearized in certain particular ways and which include arbitrary polynomial eigenvalue problems, but not arbitrary rational eigenvalue problems. The R‐CORK method exploits the structure of the linearized problem by representing the Krylov vectors in a compact form in order to reduce the cost of storage, resulting in a method with two levels of orthogonalization. The first level of orthogonalization works with vectors of the same size as the original problem, and the second level works with vectors of size much smaller than the original problem. Since vectors of the size of the linearization are never stored or orthogonalized, R‐CORK is more efficient from the point of view of memory and orthogonalization than the classical rational Krylov method applied directly to the linearization. Taking into account that the R‐CORK method is based on a classical rational Krylov method, to implement implicit restarting is also possible, and we show how to do it in a memory‐efficient way. Finally, some numerical examples are included in order to show that the R‐CORK method performs satisfactorily in practice.  相似文献   

7.
By expressing the Dunkl transform of order α of a function f in terms of the Hankel transforms of orders α and α + 1 of even and odd parts of f, respectively, we show that a considerable part of harmonic analysis of the Dunkl transform on the real line may be reduced to known results for the Hankel transform. In particular, defining the modified Dunkl transform and then considering the Dunkl transplantation operator we transfer known multiplier results for the Hankel transform to the Dunkl transform setting. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
9.
In the present paper, we propose Krylov‐based methods for solving large‐scale differential Sylvester matrix equations having a low‐rank constant term. We present two new approaches for solving such differential matrix equations. The first approach is based on the integral expression of the exact solution and a Krylov method for the computation of the exponential of a matrix times a block of vectors. In the second approach, we first project the initial problem onto a block (or extended block) Krylov subspace and get a low‐dimensional differential Sylvester matrix equation. The latter problem is then solved by some integration numerical methods such as the backward differentiation formula or Rosenbrock method, and the obtained solution is used to build the low‐rank approximate solution of the original problem. We give some new theoretical results such as a simple expression of the residual norm and upper bounds for the norm of the error. Some numerical experiments are given in order to compare the two approaches.  相似文献   

10.
For classical polynomials orthogonal with respect to a positive measure supported on the real line, the moment matrix is Hankel and positive definite. The polynomials satisfy a three term recurrence relation. When the measure is supported on the complex unit circle, the moment matrix is positive definite and Toeplitz. Then they satisfy a coupled Szeg recurrence relation but also a three term recurrence relation. In this paper we study the generalization for formal polynomials orthogonal with respect to an arbitrary moment matrix and consider arbitrary Hankel and Toeplitz matrices as special cases. The relation with Padé approximation and with Krylov subspace iterative methods is also outlined.This research was supported by the National Fund for Scientific Research (NFWO), project Lanczos, grant #2.0042.93.  相似文献   

11.
Summary. We show that the Euclidean condition number of any positive definite Hankel matrix of order may be bounded from below by with , and that this bound may be improved at most by a factor . Similar estimates are given for the class of real Vandermonde matrices, the class of row-scaled real Vandermonde matrices, and the class of Krylov matrices with Hermitian argument. Improved bounds are derived for the case where the abscissae or eigenvalues are included in a given real interval. Our findings confirm that all such matrices – including for instance the famous Hilbert matrix – are ill-conditioned already for “moderate” order. As application, we describe implications of our results for the numerical condition of various tasks in Numerical Analysis such as polynomial and rational i nterpolation at real nodes, determination of real roots of polynomials, computation of coefficients of orthogonal polynomials, or the iterative solution of linear systems of equations. Received December 1, 1997 / Revised version received February 25, 1999 / Published online 16 March 2000  相似文献   

12.
J. Wensch  H. Podhaisky  S. Hartmann 《PAMM》2003,3(1):573-574
The derivation of Rosenbrock‐Krylov methods for index 1 DAEs involves two well known techniques: a limit process which transforms a singular perturbed ODE to an index 1 DAE and the use of Krylov iterations instead of direct linear solvers for the stage equations. We show that our derived class of Rosenbrock‐Krylov schemes is independent of the order in which we apply these techniques. We also conclude that for convergence a rather accurate solution of the algebraic part is always needed.  相似文献   

13.
We consider the Hankel determinant generated by the Gaussian weight with two jump discontinuities. Utilizing the results of Min and Chen [Math. Methods Appl Sci. 2019;42:301‐321] where a second‐order partial differential equation (PDE) was deduced for the log derivative of the Hankel determinant by using the ladder operators adapted to orthogonal polynomials, we derive the coupled Painlevé IV system which was established in Wu and Xu [arXiv: 2002.11240v2] by a study of the Riemann‐Hilbert problem for orthogonal polynomials. Under double scaling, we show that, as , the log derivative of the Hankel determinant in the scaled variables tends to the Hamiltonian of a coupled Painlevé II system and it satisfies a second‐order PDE. In addition, we obtain the asymptotics for the recurrence coefficients of orthogonal polynomials, which are connected with the solutions of the coupled Painlevé II system.  相似文献   

14.
15.
We present a comparison of different multigrid approaches for the solution of systems arising from high‐order continuous finite element discretizations of elliptic partial differential equations on complex geometries. We consider the pointwise Jacobi, the Chebyshev‐accelerated Jacobi, and the symmetric successive over‐relaxation smoothers, as well as elementwise block Jacobi smoothing. Three approaches for the multigrid hierarchy are compared: (1) high‐order h‐multigrid, which uses high‐order interpolation and restriction between geometrically coarsened meshes; (2) p‐multigrid, in which the polynomial order is reduced while the mesh remains unchanged, and the interpolation and restriction incorporate the different‐order basis functions; and (3) a first‐order approximation multigrid preconditioner constructed using the nodes of the high‐order discretization. This latter approach is often combined with algebraic multigrid for the low‐order operator and is attractive for high‐order discretizations on unstructured meshes, where geometric coarsening is difficult. Based on a simple performance model, we compare the computational cost of the different approaches. Using scalar test problems in two and three dimensions with constant and varying coefficients, we compare the performance of the different multigrid approaches for polynomial orders up to 16. Overall, both h‐multigrid and p‐multigrid work well; the first‐order approximation is less efficient. For constant coefficients, all smoothers work well. For variable coefficients, Chebyshev and symmetric successive over‐relaxation smoothing outperform Jacobi smoothing. While all of the tested methods converge in a mesh‐independent number of iterations, none of them behaves completely independent of the polynomial order. When multigrid is used as a preconditioner in a Krylov method, the iteration number decreases significantly compared with using multigrid as a solver. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
Use of the stochastic Galerkin finite element methods leads to large systems of linear equations obtained by the discretization of tensor product solution spaces along their spatial and stochastic dimensions. These systems are typically solved iteratively by a Krylov subspace method. We propose a preconditioner, which takes an advantage of the recursive hierarchy in the structure of the global matrices. In particular, the matrices posses a recursive hierarchical two‐by‐two structure, with one of the submatrices block diagonal. Each of the diagonal blocks in this submatrix is closely related to the deterministic mean‐value problem, and the action of its inverse is in the implementation approximated by inner loops of Krylov iterations. Thus, our hierarchical Schur complement preconditioner combines, on each level in the approximation of the hierarchical structure of the global matrix, the idea of Schur complement with loops for a number of mutually independent inner Krylov iterations, and several matrix–vector multiplications for the off‐diagonal blocks. Neither the global matrix nor the matrix of the preconditioner need to be formed explicitly. The ingredients include only the number of stiffness matrices from the truncated Karhunen–Loève expansion and a good preconditioned for the mean‐value deterministic problem. We provide a condition number bound for a model elliptic problem, and the performance of the method is illustrated by numerical experiments. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
The paper presents fast algorithms for designing finite impulse response (FIR) notch filters. The aim is to design a digital FIR notch filter so that the magnitude of the filter has a deep notch at a specified frequency, and as the notch frequency changes, the filter coefficients should be able to track the notch fast in real time. The filter design problem is first converted into a convex optimization problem in the autocorrelation domain. The frequency response of the autocorrelation of the filter impulse response is compared with the desired filter response and the integral square error is minimized with respect to the unknown autocorrelation coefficients. Spectral factorization is used to calculate the coefficients of the filter. In the optimization process, the computational advantage is obtained by exploiting the structure of the Hessian matrix which consists of a Toeplitz plus a Hankel matrix. Two methods have been used for solving the Toeplitz‐plus‐Hankel system of equations. In the first method, the computational time is reduced by using Block–Levinson's recursion for solving the Toeplitz‐plus‐Hankel system of matrices. In the second method, the conjugate gradient method with different preconditioners is used to solve the system. Comparative studies demonstrate the computational advantages of the latter. Both these algorithms have been used to obtain the autocorrelation coefficients of notch filters with different orders. The original filter coefficients are found by spectral factorization and each of these filters have been tested for filtering synthetic as well as real‐life signals. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

18.
The concept of a representative spectrum is introduced in the context of Newton‐Krylov methods. This concept allows a better understanding of convergence rate accelerating techniques for Krylov‐subspace iterative methods in the context of CFD applications of the Newton‐Krylov approach to iteratively solve sets of non‐linear equations. The dependence of the representative spectrum on several parameters such as mesh, Mach number or discretization techniques is studied and analyzed. © 2005 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2006  相似文献   

19.
In this paper, an iterative solution method for a fourth‐order accurate discretization of the Helmholtz equation is presented. The method is a generalization of that presented in (SIAM J. Sci. Comput. 2006; 27 :1471–1492), where multigrid was employed as a preconditioner for a Krylov subspace iterative method. The multigrid preconditioner is based on the solution of a second Helmholtz operator with a complex‐valued shift. In particular, we compare preconditioners based on a point‐wise Jacobi smoother with those using an ILU(0) smoother, we compare using the prolongation operator developed by de Zeeuw in (J. Comput. Appl. Math. 1990; 33 :1–27) with interpolation operators based on algebraic multigrid principles, and we compare the performance of the Krylov subspace method Bi‐conjugate gradient stabilized with the recently introduced induced dimension reduction method, IDR(s). These three improvements are combined to yield an efficient solver for heterogeneous problems. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
In this paper, structure-preserving model reduction methods for second-order systems are investigated. By introducing an appropriate parameter, the second-order system is represented by a strictly dissipative realization and the \(H_{2}\) norm of the strictly dissipative system is discussed. Then, based on the Krylov subspace techniques, two model reduction methods are proposed to reduce the order of the strictly dissipative system. Further, the reduced second-order systems are obtained. Moreover, according to the factorization of the error system, the \(H_{2}\) error bounds are represented by the Kronecker product and the vectorization operator. Finally, two numerical examples illustrate the efficiency of our methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号