共查询到20条相似文献,搜索用时 0 毫秒
1.
Chang Yan Zhao Chang Qing Shi Yuan Wei Chen 《中国化学快报》2008,19(2):166-168
In the quest for novel PPARα/γ dual agonists as putative drugs for the treatment of type 2 diabetes and dyslipidemia, we designed and synthesized a series of urea acetates as potential PPARα/γ dual agonists. The structure of the target compounds, intermediates were characterized by ^1H N-MR, HRMS. 相似文献
2.
Katarzyna Kucwaj-Brysz Anna Dela Sabina Podlewska Marek Bednarski Agata Siwek Grzegorz Sataa Kinga Czarnota Jadwiga Handzlik Katarzyna Kie-Kononowicz 《Molecules (Basel, Switzerland)》2021,26(22)
Several studies confirmed the reciprocal interactions between adrenergic and serotoninergic systems and the influence of these phenomena on the pathogenesis of anxiety. Hence, searching for chemical agents with a multifunctional pharmacodynamic profile may bring highly effective therapy for CNS disorders. This study presents a deep structural insight into the hydantoin-arylpiperazine group and their serotonin/α-adrenergic activity. The newly synthesized compounds were tested in the radioligand binding assay and the intrinsic activity was evaluated for the selected derivatives. The computer-aided SAR analysis enabled us to answer questions about the influence of particular structural fragments on selective vs. multifunctional activity. As a result of the performed investigations, there were two leading structures: (a) compound 12 with multifunctional adrenergic-serotonin activity, which is a promising candidate to be an effective anxiolytic agent; (b) compound 14 with high α1A/α1D affinity and selectivity towards α1B, which is recommended due to the elimination of probable cardiotoxic effect. The structural conclusions of this work provide significant support for future lead optimization in order to achieve the desired pharmacodynamic profile in searching for new CNS-modulating agents. 相似文献
3.
《Angewandte Chemie (International ed. in English)》2017,56(20):5551-5555
Despite the burgeoning demand for fluorine‐containing chemical entities, the construction of CF3‐containing stereogenic centers has remained elusive. Herein, we report the strategic merger of CuI/base‐catalyzed enolization of an α‐CF3 amide and Pd0‐catalyzed allylic alkylation in an enantioselective manner to deliver chiral building blocks bearing a stereogenic carbon center connected to a CF3, an amide carbonyl, and a manipulable allylic group. The phosphine complexes of CuI and Pd0 engage in distinct catalytic roles without ligand scrambling to render the dual catalysis operative to achieve asymmetric α‐allylation of the amide. The stereoselective cyclization of the obtained α‐CF3‐γ,δ‐unsaturated amides to give tetrahydropyran and γ‐lactone‐fused cyclopropane skeletons highlights the synthetic utility of the present catalytic method as a new entry to non‐racemic CF3‐containing compounds. 相似文献
4.
Victor S. Batista Adriano Marques Gonalves Nailton M. Nascimento-Júnior 《Molecules (Basel, Switzerland)》2022,27(23)
The neuronal nicotinic acetylcholine receptors (nAChRs) belong to the ligand-gated ion channel (GLIC) group, presenting a crucial role in several biological processes and neuronal disorders. The α4β2 and α7 nAChRs are the most abundant in the central nervous system (CNS), being involved in challenging diseases such as epilepsy, Alzheimer’s disease, schizophrenia, and anxiety disorder, as well as alcohol and nicotine dependencies. In addition, in silico-based strategies may contribute to revealing new insights into drug design and virtual screening to find new drug candidates to treat CNS disorders. In this context, the pharmacophore maps were constructed and validated for the orthosteric sites of α4β2 and α7 nAChRs, through a docking-based Comparative Intermolecular Contacts Analysis (dbCICA). In this sense, bioactive ligands were retrieved from the literature for each receptor. A molecular docking protocol was developed for all ligands in both receptors by using GOLD software, considering GoldScore, ChemScore, ASP, and ChemPLP scoring functions. Output GOLD results were post-processed through dbCICA to identify critical contacts involved in protein-ligand interactions. Moreover, Crossminer software was used to construct a pharmacophoric map based on the most well-behaved ligands and negative contacts from the dbCICA model for each receptor. Both pharmacophore maps were validated by using a ROC curve. The results revealed important features for the ligands, such as the presence of hydrophobic regions, a planar ring, and hydrogen bond donor and acceptor atoms for α4β2. Parallelly, a non-planar ring region was identified for α7. These results can enable fragment-based drug design (FBDD) strategies, such as fragment growing, linking, and merging, allowing an increase in the activity of known fragments. Thus, our results can contribute to a further understanding of structural subunits presenting the potential for key ligand-receptor interactions, favoring the search in molecular databases and the design of novel ligands. 相似文献
5.
Monika Mazik Prof. Dr. Andrè Hartmann Dipl.‐Chem. Peter G. Jones Prof. Dr. 《Chemistry (Weinheim an der Bergstrasse, Germany)》2009,15(36):9147-9159
1H NMR spectroscopic titrations in competitive and non‐competitive media, as well as binding studies in two‐phase systems, such as phase transfer of sugars from aqueous into organic solvents and dissolution of solid carbohydrates in apolar media revealed both highly effective recognition of neutral carbohydrates and interesting binding preferences of an acyclic phenanthroline‐based receptor 1 . Compared to the previously described acyclic receptors, compound 1 displays significantly higher binding affinities, the rare capability to extract sugars from water into non‐polar organic solutions and α‐ versus β‐anomer binding preference in the recognition of glycosides, which differs from those observed for other receptor systems. X‐ray crystallographic investigations revealed the presence of water molecules in the binding pocket of 1 that are engaged in the formation of hydrogen‐bonding motifs similar to those suggested by molecular modelling for the sugar OH groups in the receptor–sugar complexes. The molecular modelling calculations, synthesis, crystal structure and binding properties of 1 are described and compared with those of the previously described receptors. 相似文献
6.
7.
The supermolecular based on sodium molybdate(VI) and sulfate, dibenzo‐18‐crown‐6 was synthesized in acetonitrile and characterized by elemental analysis, IR, 1H NMR, single crystal X‐ray diffraction, indicating that it contains [S2Mo18O62]4+ and [Na(DB18C6)(H2O)]+, where each sodium ion is deviated from the plane defined by the oxygen atoms in the corresponding crown ether. The compound crystallizes in the monoclinic space group C2/c with a=3.29332(10) nm, b=1.90917(6) nm, c=2.63132(7) nm, β=121.6630(10)°, V=14081.8(7) nm3, Z=8, T=293(2) K, and R1 (wR2)=0.0177 (0.1525). The compound exhibits a novel organic‐inorganic structure, in which the crown ether‐sodium complexes are coordinated to the terminal oxygen atoms of Mo18O54 and the oxygen atoms of water molecule. 相似文献
8.
Petros Giastas Athanasios Papakyriakou George Tsafaras Socrates J. Tzartos Marios Zouridakis 《Molecules (Basel, Switzerland)》2022,27(14)
The β3 subunit of nicotinic acetylcholine receptors (nAChRs) participates in heteropentameric assemblies with some α and other β neuronal subunits forming a plethora of various subtypes, differing in their electrophysiological and pharmacological properties. While β3 has for several years been considered an accessory subunit without direct participation in the formation of functional binding sites, recent electrophysiology data have disputed this notion and indicated the presence of a functional (+) side on the extracellular domain (ECD) of β3. In this study, we present the 2.4 Å resolution crystal structure of the monomeric β3 ECD, which revealed rather distinctive loop C features as compared to those of α nAChR subunits, leading to intramolecular stereochemical hindrance of the binding site cavity. Vigorous molecular dynamics simulations in the context of full length pentameric β3-containing nAChRs, while not excluding the possibility of a β3 (+) binding site, demonstrate that this site cannot efficiently accommodate the agonist nicotine. From the structural perspective, our results endorse the accessory rather than functional role of the β3 nAChR subunit, in accordance with earlier functional studies on β3-containing nAChRs. 相似文献
9.
Yukiko Furuhashi Tadahisa Iwata Yoshiharu Kimura Yoshiharu Doi 《Macromolecular bioscience》2003,3(9):462-470
A structural comparison of three different crystalline forms of poly(β‐propiolactone) (PPL) was carried out by wide‐angle X‐ray diffraction, Fourier‐transform infrared spectroscopy, and differential scanning calorimetry. The α‐form in a hot‐drawn and annealed film represents a 21 helix conformation. The β‐form in a cold‐drawn and annealed film represents a planar zigzag conformation. The γ‐form in an oriented sedimented mat of solution‐grown chain‐folded lamellar crystals also implies a planar zigzag conformation. The solution‐cast film depicts similar outlines with the γ‐form in lamellar crystals in all the experimental measurements, suggesting that the molecular chain in the solution‐cast film has a planar zigzag conformation. While elongation at break decreased, tensile strength and Young's modulus increased with an increase in the crystallinity, independent of the crystalline forms. The influence of the enzymatic degradation of these crystal structures has been investigated by using an extracellular PHB depolymerase purified from Ralstonia pickettii T1. The rate of degradation was in the order of β‐form > α‐form > solution‐cast (γ‐form) film, and the different surface morphologies after partial enzymatic degradation were observed in scanning electron micrographs. It is suggested that the crystal structure is one of the important factors for determining the rate of degradation together with crystallinity.
10.
Tianxiang Guo Runan Zhang Xilai Wang Lingfeng Kong Junpeng Xu Huining Xiao Alemayehu Hailu Bedane 《Molecules (Basel, Switzerland)》2022,27(21)
With a purpose of extending the application of β-cyclodextrin (β-CD) for gas adsorption, this paper aims to reveal the pore formation mechanism of a promising adsorbent for CO2 capture which was derived from the structural remodeling of β-CD by thermal activation. The pore structure and performance of the adsorbent were characterized by means of SEM, BET and CO2 adsorption. Then, the thermochemical characteristics during pore formation were systematically investigated by means of TG-DSC, in situ TG-FTIR/FTIR, in situ TG-MS/MS, EDS, XPS and DFT. The results show that the derived adsorbent exhibits an excellent porous structure for CO2 capture accompanied by an adsorption capacity of 4.2 mmol/g at 0 °C and 100 kPa. The porous structure is obtained by the structural remodeling such as dehydration polymerization with the prior locations such as hydroxyl bonded to C6 and ring-opening polymerization with the main locations (C4, C1, C5), accompanied by the release of those small molecules such as H2O, CO2 and C3H4. A large amount of new fine pores is formed at the third and fourth stage of the four-stage activation process. Particularly, more micropores are created at the fourth stage. This revealed that pore formation mechanism is beneficial to structural design of further thermal-treated graft/functionalization polymer derived from β-CD, potentially applicable for gas adsorption such as CO2 capture. 相似文献
11.
Systematic Dissection of an Aminopyrrolic Cage Receptor for β‐Glucopyranosides Reveals the Essentials for Effective Recognition 下载免费PDF全文
Dr. Oscar Francesconi Matteo Gentili Prof. Cristina Nativi Dr. Ana Ardá Prof. F. Javier Cañada Prof. Jesús Jiménez‐Barbero Dr. Stefano Roelens 《Chemistry (Weinheim an der Bergstrasse, Germany)》2014,20(20):6081-6091
A set of structures designed for the recognition of glucosides has been obtained by systematically destructuring a tripodal aminopyrrolic cage receptor that selectively recognizes octyl‐β‐D ‐glucopyranoside (OctβGlc). NMR spectroscopy and isothermal titration calorimetry binding measurements showed that cleavage of one pillar of the cage was beneficial to the binding properties of the receptor, as long as two residual amino groups of the cleaved pillar were present. Removal of these two residual amino groups produced a dramatic loss of affinity for OctβGlc of the resulting monocyclic analogue of the parent cage receptor. A significant improvement in the binding ability was achieved by replacing one pillar with two aminopyrrolic hydrogen‐bonding arms, despite the loss of a preorganized structure. In contrast to the cage receptor, recognition of OctβGlc was observed, even in a competitive medium (30 % DMF in chloroform). Structural studies in solution, carried out through NMR spectroscopy and molecular modeling calculations, led to the elucidation of the 3D binding modes of the side‐armed monocyclic receptors; this highlighted the key role of the amino groups and demonstrated the occurrence of a rotaxane‐like complex, which featured the octyl chain of the glucoside threaded through the macrocyclic ring. 相似文献
12.
Daniel Nicholls Carole Elleman Norman Shankland Kenneth Shankland 《Acta Crystallographica. Section C, Structural Chemistry》2019,75(7):904-909
A new crystalline form of αβ‐d ‐lactose (C12H22O11) has been prepared by the rapid drying of an approximately 40% w/v syrup of d ‐lactose. Initially identified from its novel powder X‐ray diffraction pattern, the monoclinic crystal structure was solved from a microcrystal recovered from the generally polycrystalline mixed‐phase residue obtained at the end of the drying step. This is the second crystalline form of αβ‐d ‐lactose to be identified and it has a high degree of structural three‐dimensional similarity to the previously identified triclinic form. 相似文献
13.
Francesco Bavo Marco Pallavicini Rebecca Appiani Cristiano Bolchi 《Molecules (Basel, Switzerland)》2021,26(12)
The selectivity of α4β2 nAChR agonists over the α3β4 nicotinic receptor subtype, predominant in ganglia, primarily conditions their therapeutic range and it is still a complex and challenging issue for medicinal chemists and pharmacologists. Here, we investigate the determinants for such subtype selectivity in a series of more than forty α4β2 ligands we have previously reported, docking them into the structures of the two human subtypes, recently determined by cryo-electron microscopy. They are all pyrrolidine based analogues of the well-known α4β2 agonist N-methylprolinol pyridyl ether A-84543 and differ in the flexibility and pattern substitution of their aromatic portion. Indeed, the direct or water mediated interaction with hydrophilic residues of the relatively narrower β2 minus side through the elements decorating the aromatic ring and the stabilization of the latter by facing to the not conserved β2-Phe119 result as key distinctive features for the α4β2 affinity. Consistently, these compounds show, despite the structural similarity, very different α4β2 vs. α3β4 selectivities, from modest to very high, which relate to rigidity/extensibility degree of the portion containing the aromatic ring and to substitutions at the latter. Furthermore, the structural rationalization of the rat vs. human differences of α4β2 vs. α3β4 selectivity ratios is here proposed. 相似文献
14.
15.
Dual Catalysis with Copper and Rhenium for Trifluoromethylation of Propargylic Alcohols: Efficient Synthesis of α‐Trifluoromethylated Enones 下载免费PDF全文
Dr. Hiromichi Egami Takafumi Ide Masashi Fujita Toshifumi Tojo Prof.Dr. Yoshitaka Hamashima Prof.Dr. Mikiko Sodeoka 《Chemistry (Weinheim an der Bergstrasse, Germany)》2014,20(38):12061-12065
Trifluoromethylation of propargylic alcohols to provide (Z)‐α‐trifluoromethylated enones and β‐unsubstituted α‐trifluoromethylated enones proceeded with high yield and selectivity in the presence of CuI/Re2O7. The Z isomer was formed under kinetic control, though it is less stable than the E isomer in terms of steric repulsion. 相似文献
16.
17.
A novel anhydrogalactosucrose derivative 2′‐methoxyl‐O‐1′,4′:3′,6′‐dianhydro‐β‐D‐fructofuranosyl 3,6‐anhydro‐4‐chloro‐4‐deoxy‐α‐D‐galactopyranoside ( 4 ) was prepared from 3,6:1′,4′:3′,6′‐trianhydro‐4‐chloro‐4‐deoxy‐galactosucrose ( 3 ) via a facile method and characterized by 1H NMR, 13C NMR and 2D NMR spectra. The single crystal X‐ray diffraction analysis shows that the title molecule forms a two thee‐dimensional network structure by two kinds of hydrogen bond interactions [O(2) H(2)···O(7), O(5) H(5)···O(8)]. Its stability was investigated by acid hydrolysis reaction treated with sulfuric acid, together with the formation of 1,6‐Di‐O‐methoxy‐4‐chloro‐4‐deoxy‐β‐D‐galactopyranose ( 5 ) and 2,2‐Di‐C‐methoxy‐1,4:3,6‐dianhydromannitol ( 6 ). According to the result, the relative stability of the ether bonds in the structure is in the order: C(1) O C(5)≈C(3′) O C(6′)≈C(1′) O C(4′)>C(3) O C(6)≈C(1) O C(2′)>C(2′) O C(5′). 相似文献
18.
19.
Filippo Favretto Jeremy D. Baker Timo Strohker Loren B. Andreas Laura J. Blair Stefan Becker Markus Zweckstetter 《Angewandte Chemie (International ed. in English)》2020,59(14):5643-5646
Peptidylprolyl isomerases (PPIases) catalyze cis/trans isomerization of prolines. The PPIase CypA colocalizes with the Parkinson's disease (PD)‐associated protein α‐synuclein in cells and interacts with α‐synuclein oligomers. Herein, we describe atomic insights into the molecular details of the α‐synuclein/CypA interaction. NMR spectroscopy shows that CypA catalyzes isomerization of proline 128 in the C‐terminal domain of α‐synuclein. Strikingly, we reveal a second CypA‐binding site formed by the hydrophobic sequence 47GVVHGVATVA56, termed PreNAC. The 1.38 Å crystal structure of the CypA/PreNAC complex displays a contact between alanine 53 of α‐synuclein and glutamine 111 in the catalytic pocket of CypA. Mutation of alanine 53 to glutamate, as found in patients with early‐onset PD, weakens the interaction of α‐synuclein with CypA. Our study provides high‐resolution insights into the structure of the PD‐associated protein α‐synuclein in complex with the most abundant cellular cyclophilin. 相似文献
20.
A computational study has been performed to investigate the mechanism of RhIII‐catalyzed C−H bond activation using sulfoxonium ylides as a carbene precursor. The stepwise and concerted activation modes for sulfoxonium ylides were investigated. Detailed theoretical results showed that the favored stepwise pathway involves C−H bond activation, carbonization, carbene insertion, and protonation. The free energy profiles for dialkylation of 2‐phenylpyridine were also calculated to account for the low yield of this reaction. Furthermore, the substituent effect was elucidated by comparing the energy barriers for the protonation of meta‐ and para‐substituted sulfoxonium ylides calculated by density functional theory. 相似文献