首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 90 毫秒
1.
The purpose was to analyse magnetic susceptibility effects on accuracy of point-wise measurements of signal profiles in the assessment of MRS volume selection performance. An existing phantom design consisting of a sphere with a movable signal source was used for the investigation. The influence from the phantom on magnetic field homogeneity was measured with phase sensitive 1H imaging and 31P spectroscopy on a 1.5 T whole body MR system. The susceptibility effects for such a phantom design can be separated in 1/ A variation in the background magnetic field, which is caused by the stationary structures and has a significant influence on spatial accuracy. 2/ A magnetic field distortion, which is caused by the movable signal source and has very little influence on accuracy. The spatial inaccuracy due to susceptibility effects in this phantom, was 0.03 mm for positions of the signal source covering a 40-mm VOI. Susceptibility effects from the movable signal source were substantial but had very little influence on spatial accuracy. Still, improvements of this phantom design are possible. Point-wise measurements using a phantom with a movable signal source is inherently insensitive to susceptibility effects from the signal source and permits accurate signal profile measurements of high spatial (sub-mm) resolution.  相似文献   

2.
A new phantom and evaluation method for experimental evaluation of 1H-magnetic resonance spectroscopy single volume localization techniques regarding signal contamination (C), defined as the part of the signal originating outside the volume of interest, is presented. The quality assessment method is based on a spherical phantom with an oil/water interface in order to reduce susceptibility effects, and applied for stimulated-echo acquisition method (STEAM) and spin-echo (SE) sequences, echo times of 270, 135, and 10 ms, and cubic volumes of interest (VOI) of 1(3), 1.5(3), 2(3), 2.5(3), and 3(3) cm3. To be able to mimic measurements of the contamination in three dimensions the physical gradients representing the three orthogonal directions for slice selection were shifted in the pulse sequences. Contamination values in one dimension differed between 6.5% and 8.4% in SE sequences, and between 0.7% and 13.8% in STEAM sequences. In STEAM sequences a decrease of C with increasing VOI size was observed while SE sequences showed comparable C values for the different VOI sizes tested. The total contamination in three dimensions were 19% and 18% in SE and STEAM sequences with a TE of 270 ms, and 7% in a STEAM sequence with a TE of 10 ms, respectively. The presented evaluation method is easily applied to the new phantom and showed high reproducibility.  相似文献   

3.
A new phantom and evaluation method for experimental evaluation of 1H-magnetic resonance spectroscopy single volume localization techniques regarding signal contamination (C), defined as the part of the signal originating outside the volume of interest, is presented. The quality assessment method is based on a spherical phantom with an oil/water interface in order to reduce susceptibility effects, and applied for stimulated-echo acquisition method (STEAM) and spin-echo (SE) sequences, echo times of 270, 135, and 10 ms, and cubic volumes of interest (VOI) of 13, 1.53, 23, 2.53, and 33 cm3. To be able to mimic measurements of the contamination in three dimensions the physical gradients representing the three orthogonal directions for slice selection were shifted in the pulse sequences. Contamination values in one dimension differed between 6.5% and 8.4% in SE sequences, and between 0.7% and 13.8% in STEAM sequences. In STEAM sequences a decrease of C with increasing VOI size was observed while SE sequences showed comparable C values for the different VOI sizes tested. The total contamination in three dimensions were 19% and 18% in SE and STEAM sequences with a TE of 270 ms, and 7% in a STEAM sequence with a TE of 10 ms, respectively. The presented evaluation method is easily applied to the new phantom and showed high reproducibility.  相似文献   

4.
The region-selected intensity determination (RSID) method was proposed to obtain the temporal changes in electron paramagnetic resonance (EPR) signal intensity from a selected region by a stationary magnetic field gradient. To select the region, the subtraction field that was derived from the distance between the center and the projection of the selected region to the direction of the field gradient was applied to the main field. The directions of the stationary magnetic field gradient at a constant strength were systematically changed in a three-dimensional space after each acquisition of the spectrum. All spectra under the field gradient were accumulated and the resultant spectrum was deconvoluted by a spectrum without the field gradient. The center height of the deconvoluted spectrum indicates the signal intensity of the selected region. To verify this method, a phantom or in vivo study was conducted on a 700 MHz radio-frequency EPR spectrometer equipped with a bridged loop-gap resonator. In the temporal EPR measurements of phantoms including a nitroxide radical aqueous solution with and without ascorbic acid, the selected regions were alternatively changed at the position of the two phantoms. The signal intensity derived from the one phantom showed an exponential decay, and for the other phantom, no temporal changes. The spatial resolution of this method was estimated to be 2.7 mm by using a pinpoint phantom that included diphenylpicrylhydrazyl powder. In the in vivo temporal EPR measurements, the selected regions were alternatively changed at the cerebral cortex and the striatum of rats that had received a blood-brain barrier-permeative nitroxide radical. The decay rate of the signal intensity at each region obtained by this method was consistent with those previously reported.  相似文献   

5.
The purpose of this study was to characterize the neurochemical profiles of various parts of the canine brain using proton nuclear magnetic resonance spectroscopy, tissue extraction, and external simulated phantom concentration quantification. The occipital, frontal, and temporal lobes, thalami, cerebellar cortices, and spinal cords of five pure bred adult beagles were collected, and heavy water solutions for the nuclear magnetic resonance sample were prepared using the methanol–chloroform–water extraction method. The metabolite concentrations in canine brain tissues were measured and compared with those found in human and rat brain tissues. In addition, the cross peaks of Lac, Glu/Gln, and mIns were identified using two-dimensional correlation spectroscopy in the canine frontal cortex. The present study demonstrated the absolute quantification of canine neuronal parts using in vitro high-resolution magnetic resonance spectroscopy, with tissue extraction used to accurately measure metabolite concentrations, thus providing valuable metabolic information regarding the various canine neuronal regions.  相似文献   

6.
A new pulse sequence based on Hadamard encoding technique, dubbed as Hadamard encoded localised correlation spectroscopy (HLCOSY) was devised to speed up the acquisition of localised two-dimensional (2D) nuclear magnetic resonance (NMR) correlation spectroscopy (LCOSY). Direct frequency-domain (F2) excitation with an array of different radiofrequencies has been used to speed up 2D NMR experiments by a large factor. Multiplex excitation in the indirect frequency (F1) dimension is restricted to the signal-bearing regions and is encoded according to a Hadamard matrix of order N, where N is a relatively small number. The detected signals are decoded by reference to the same Hadamard matrix. An HLCOSY spectrum of a two-compartment phantom was obtained with a total acquisition time of 32 s, with its volume localisation confirmed. The success in achieving 2D LCOSY spectrum of pig marrow within 40 s shows the feasibility of HLCOSY for the detection of biological tissues. It may provide a promising way for in vivo and in vitro NMRs.  相似文献   

7.
PurposeA fast spin-echo sequence based on the Periodically Rotated Overlapping Parallel Lines with Enhanced Reconstruction (PROPELLER) technique is a magnetic resonance (MR) imaging data acquisition and reconstruction method for correcting motion during scans. Previous studies attempted to verify the in vivo capabilities of motion-corrected PROPELLER in real clinical situations. However, such experiments are limited by repeated, stray head motion by research participants during the prescribed and precise head motion protocol of a PROPELLER acquisition. Therefore, our purpose was to develop a brain phantom set for motion-corrected PROPELLER.Materials and methodsThe profile curves of the signal intensities on the in vivo T2-weighted image (T2WI) and 3-D rapid prototyping technology were used to produce the phantom. In addition, we used a homemade driver system to achieve in-plane motion at the intended timing. We calculated the Pearson's correlation coefficient (R2) between the signal intensities of the in vivo T2WI and the phantom T2WI and clarified the rotation precision of the driver system. In addition, we used the phantom set to perform initial experiments to show the rotational angle and frequency dependences of PROPELLER.ResultsThe in vivo and phantom T2WIs were visually congruent, with a significant correlation (R2) of 0.955 (p < .001). The rotational precision of the driver system was within 1 degree of tolerance. The experiment on the rotational angle dependency showed image discrepancies between the rotational angles. The experiment on the rotational frequency dependency showed that the reconstructed images became increasingly blurred by the corruption of the blades as the number of motions increased.ConclusionsIn this study, we developed a phantom that showed image contrasts and construction similar to the in vivo T2WI. In addition, our homemade driver system achieved precise in-plane motion at the intended timing. Our proposed phantom set could perform systematic experiments with a real clinical MR image, which to date has not been possible in in vivo studies. Further investigation should focus on the improvement of the motion-correction algorithm in PROPELLER using our phantom set for what would traditionally be considered problematic patients (children, emergency patients, elderly, those with dementia, and so on).  相似文献   

8.
Nuclear magnetic resonance (NMR) signals with shortT 1 andT 2, such as the13C signal of glycogen, are difficult to localize in three dimensions without major signal loss. A pulse sequence that accomplishes the spatial localization of1H-decoupled13C NMR signals on a whole-body scanner within the Food and Drug Administration guidelines for specific absorption rates was designed. The method uses an optimized three-dimensional outer volume suppression scheme combined with one-dimensional image-selected in vivo spectroscopy and surface coil detection. The localization performance of the sequence was validated at 4 T with double chambered phantoms and13C magnetic resonance imaging. Localized13C spectra were acquired from human brain and muscle.  相似文献   

9.
Previous work has demonstrated that deficiencies in volume selection sequences used in magnetic resonance spectroscopy may compromise the quality of the spectra obtained. In this paper, further studies on the ISIS and PRESS sequences are presented. Under conditions of partial saturation, ISIS can exhibit serious contamination with extraneous signal, particularly when a small volume of interest (VOI) is selected. ISIS protocols should therefore use VOIs that are large relative to the target volume, and repetition times that are as long as practicable. In PRESS, contamination is found to be minimised by using a VOI that is small relative to the target volume, and to be independent of repetition time. PRESS performance is also independent of echo time, except when very short echo times are used. These results are consistent with previously published work on ISIS and PRESS, and it is now possible to establish generic features of these sequences and to understand the implications for quantitative spectroscopy. T(1)-weighting of contamination in ISIS can compromise both relative and absolute quantification techniques in several respects. Contamination in PRESS is largely independent of relaxation times and would be easier to model and correct for in the context of quantitative spectroscopy.  相似文献   

10.
In magnetic resonance electrical impedance tomography (MREIT), currents are injected into an object, the resulting magnetic flux density is measured using MRI, and the conductivity distribution reconstructed using these MRI data. The relatively long acquisition times of conventional MREIT methods limit the signal averaging rate and are susceptible to motion artifacts. In this study, we reconstructed the conductivity distribution of an agarose gel phantom from data acquired in under a minute using a single-shot, spin echo, echo planar imaging (SS-SEPI) pulse sequence. The results demonstrate that SS-SEPI can be used for MREIT data acquisition.  相似文献   

11.
γ-氨基丁酸(γ-Aminobutyric Acid,GABA)是人脑中枢神经系统中一种重要的抑制性神经递质,对神经活动的调节起着主导作用.由于人脑GABA固有含量低以及与其他代谢物谱峰的重叠,在临床用磁共振成像系统中使用点分辨波谱(PRESS)序列或受激回波采集模式(STEAM)序列难以直接检测到GABA δ 3.01信号. 该文报道了MEGA-PRESS脉冲序列在临床用3 T磁共振成像系统上的实现,采用J差分谱编辑技术实现了对GABA的检测. 水模实验和人脑在体实验显示,MEGA-PRESS序列对GABA δ 3.01信号具有较好的检测效果.  相似文献   

12.
We determined the reproducibility of GABA (gamma-aminobutyric acid) measurements using 2D J-resolved magnetic resonance spectroscopy (MRS) on a clinical 1.5-T MR imaging scanner. Two-dimensional J-resolved spectra were acquired in vitro across five GABA concentrations using a volume head coil and a 5-in. surface coil. Additional spectra using a sixth GABA phantom with a very low concentration and from a healthy volunteer were recorded in the 5-in. surface coil only. In each case, the 3.01-ppm GABA resonance was quantified; for comparison, the peak integrals of choline (3.2 ppm) and creatine (3.03 ppm) were recorded. At a physiological concentration (1.2 mM), in vitro GABA measurement was significantly more reproducible in the surface coil than in the volume coil (P=.005), with coefficients of variation (CVs) being less than 16% with the surface coil and up to 68% with the volume head coil. At the smallest concentration of in vivo GABA reported using other spectroscopy techniques (0.8 mM) and detected only using the surface coil, the CV for GABA was 23% and was less than 10% for choline and creatine, which compare favorably with results from published studies. In vivo, the CV for GABA measurement was 26%, suggesting that 2D J-resolved MRS would be suitable for detecting physiological changes in GABA, similar to those reported using other methods.  相似文献   

13.
In this work we present a method for improving the speed of spin-spin relaxation time (T2) measurements for compartmental analysis in stimulated echo localized magnetic resonance spectroscopy without reducing the sampling density. The technique uses a progressive repetition time (TR) to compensate for echo time (TE) dependent variations in saturation effects that would otherwise modulate the received signal at short TRs. The method was validated in T2 studies on 10 young healthy subjects in spectroscopic voxels localized along either the right or left Sylvian fissure (2 x 2 x 1.5 cm3, 10 ms mixing time (TM), 2048 data points, 819.2 ms acquisition time). The TR was automatically adjusted so that TR-TM-TE/2 was kept constant as the TE was incremented. Compared to long TR T2 experiments, the progressive TR technique consistently replicated the T2 relaxation times and reference signals of the tissue water compartment while reducing the data acquisition time by more than 50%. The percent error was on average less than 2% for estimates of T2 and S(0) for the tissue water, an indication that the progressive TR technique is a useful method for determining the tissue water signal for internal referencing.  相似文献   

14.
Simultaneous electroencephalography (EEG)/functional magnetic resonance imaging (fMRI) acquisition can identify the brain networks involved in generating specific EEG patterns. Yet, the combination of these methodologies is hampered by strong artifacts that arise due to electromagnetic interference during magnetic resonance (MR) image acquisition. Here, we report corrections of the gradient-induced artifact in phantom measurements and in experiments with an awake behaving macaque monkey during fMRI acquisition at a magnetic field strength of 4.7 T. Ninety-one percent of the amplitude of a 10 microV, 10 Hz phantom signal could successfully be recovered without phase distortions. Using this method, we were able to extract the monkey EEG from scalp recordings obtained during MR image acquisition. Visual evoked potentials could also be reliably identified. In conclusion, simultaneous EEG/fMRI acquisition is feasible in the macaque monkey preparation at 4.7 T and holds promise for investigating the neural processes that give rise to particular EEG patterns.  相似文献   

15.
Gamma-aminobutyric acid (GABA) is a major inhibitory neurotransmitter in the brain. Understanding the GABA concentration, in vivo, is important to understand normal brain function. Using MEGA point-resolved spectroscopy sequence with interleaved water scans to detect subject motion, GABA level of sensorimotor cortex was measured using a voxel identified from a functional magnetic resonance imaging scan. The GABA level in a 20×20×20-mm3 voxel consisting of 37%±7% gray matter, 52%±12% white matter and 11%±8% cerebrospinal fluid in the sensorimotor region was measured to be 1.43±0.48 mM. In addition, using linear regression analysis, GABA concentrations within gray and white matter were calculated to be 2.87±0.61 and 0.33±0.11 mM, respectively.  相似文献   

16.
The hippocampal formation possesses an important role in the development and maintenance of short-term memory. In this study, magnetic resonance imaging (MRI) and gross histology were used to quantify the volume of the hippocampal formation in canines. High resolution MRI, using 1 mm thick slices and an intraplanar resolution of 0.35 mm was performed at 2.0 T both in vivo and in vitro following in situ fixation. The volumes of the hippocampal formations were determined from MR images and compared to those obtained from one mm thick gross histologic sections. The average volume of the canine hippocampal formation, measured from in vivo and in vitro MR images was 476.0 ± 79.5 and 467.3 ± 53.7 mm3, respectively. Determined from gross histology, the volume of the hippocampal formation was 463.6 ± 24.1 mm3. Quantitation of the canine hippocampal formation using in vivo MRI showed good correlation with in vitro MRI and histology, verifying the reliability and reproducibility of in vivo MRI measurements. High resolution MRI using 1 mm thick slices through the whole canine hippocampal formation is necessary for accurate volume determination of a structure of this size.  相似文献   

17.
High-resolution dose profiles produced by the Leksell Gamma Knife were obtained in BANG(TM) polymer gel, using a 3 T whole-body scanner upgraded by a magnetic resonance microscopy unit. The gel was contained in 22.3 mm diameter flasks that were inserted into a solid, tissue-equivalent head phantom irradiated by fields of by 8 and 14 mm collimators. Dose profiles were obtained from a linear dose-response curve (R(2) vs. Dose). Excellent agreement was obtained when the gel data were compared to film dosimetry and calculated data.  相似文献   

18.
An electropolished magnetic needle made of Nd(2)Fe(14)B permanent magnet was used for obtaining better spatial resolution than that achieved in our previous work. We observed the magnetic field gradient |G(Z)|=80.0G/microm and the field strength B=1250G at Z approximately 8.8 microm from the top of the needle. The use of this needle for three dimensional magnetic resonance force microscopy at room temperature allowed us to achieve the voxel resolution to be 0.6 microm x 0.6 microm x 0.7 microm in the reconstructed image of DPPH phantom. The acquisition time spent for the whole data collection over 64 x 64 x 16 points, including an iterative signal average by six times per point, was about 10 days.  相似文献   

19.
Intramyocellular lipids (IMCL) play an important role in muscle metabolism. 1H magnetic resonance spectroscopy is the method of choice for non-invasive assessment of IMCL. However, IMCL quantitation is hampered by the larger overlapping resonances of extramyocellular lipids (EMCL). A phantom that mimics EMCL and IMCL, i.e., the 0.2-ppm resonance splitting, would be useful for testing acquisition strategies and post-processing algorithms. Here, we propose a phantom that consists of a cylindrical bottle filled with dairy cream and sunflower oil. Similar to EMCL, the oil (CH2) n protons resonate at 1.5?ppm; similar to IMCL, the spherical shape of droplets in cream results in (CH2) n protons resonating at 1.3?ppm. The relative amount of IMCL versus EMCL can be easily controlled in a systematic and exact fashion by displacing the voxel of interest across the cream–oil interface. This phantom is of simple construction and made of inexpensive and readily available materials, and should be of value in testing both acquisition and spectral analysis strategies in the context of ICML/ECML studies.  相似文献   

20.

Objectives

As a unique tool to assess metabolic fluxes noninvasively, 13C magnetic resonance spectroscopy (MRS) could help to characterize and understand malignancy in human tumors. However, its low sensitivity has hampered applications in patients. The aim of this study was to demonstrate that with sensitivity-optimized localized 13C MRS and intravenous infusion of [1-13C]glucose under euglycemia, it is possible to assess the dynamic conversion of glucose into its metabolic products in vivo in human glioma tissue.

Materials and Methods

Measurements were done at 3 T with a broadband single RF channel and a quadrature 13C surface coil inserted in a 1H volume coil. A 1H/13C polarization transfer sequence was applied, modified for localized acquisition, alternatively in two (50 ml) voxels, one encompassing the tumor and the other normal brain tissue.

Results

After about 20 min of [1-13C]glucose infusion, a [3-13C]lactate signal appeared among several resonances of metabolic products of glucose in MR spectra of the tumor voxel. The resonance of [3-13C]lactate was absent in MR spectra from contralateral tissue. In addition, the intensity of [1-13C]glucose signals in the tumor area was about 50% higher than that in normal tissue, likely reflecting more glucose in extracellular space due to a defective blood–brain barrier. The signal intensity for metabolites produced in or via the tricarboxylic acid (TCA) cycle was lower in the tumor than in the contralateral area, albeit that the ratios of isotopomer signals were comparable.

Conclusion

With an improved 13C MRS approach, the uptake of glucose and its conversion into metabolites such as lactate can be monitored noninvasively in vivo in human brain tumors. This opens the way to assessing metabolic activity in human tumor tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号