首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Well‐defined azobenzene‐containing side‐chain liquid crystalline diblock copolymers composed of poly[6‐(4‐methoxy‐azobenzene‐4′‐oxy) hexyl methacrylate] (PMMAZO) and poly(γ‐benzyl‐L ‐glutamate) (PBLG) were synthesized by click reaction from alkyne‐ and azide‐functionalized homopolymers. The alkyne‐terminated PMMAZO homopolymers were synthesized by copper‐mediated atom transfer radical polymerization with a bromine‐containing alkyne bifunctional initiator, and the azido‐terminated PBLG homopolymers were synthesized by ring‐opening polymerization of γ‐benzyl‐L ‐glutamate‐N‐carboxyanhydride in DMF at room temperature using an amine‐containing azide initiator. The thermotropic phase behavior of PMMAZO‐b‐PBLG diblock copolymers in bulk were investigated using differential scanning calorimetry and polarized light microscopy. The PMMAZO‐b‐PBLG diblock copolymers exhibited a smectic phase and a nematic phase when the weight fraction of PMMAZO block was more than 50%. Photoisomerization behavior of PMMAZO‐b‐PBLG diblock copolymers and the corresponding PMMAZO homopolymers in solid film and in solution were investigated using UV–vis. In solution, trans–cis isomerization of diblock copolymers was slower than that of the corresponding PMMAZO homopolymers. These results may provide guidelines for the design of effective photoresponsive anisotropic materials. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

2.
A series of novel side‐chain liquid crystalline ABC triblock copolymers composed of poly(ethylene oxide) (PEO), polystyrene (PS), and poly[6‐(4‐methoxy‐4′‐oxy‐azobenzene) hexyl methacrylate] (PMMAZO) were synthesized by atom transfer radical polymerization (ATRP) using CuBr/1,1,4,7,7‐pentamethyldiethylenetriamine (PMDETA) as a catalyst system. First, the bromine‐terminated diblock copolymer poly(ethylene oxide)‐block‐polystyrene (PEO‐PS‐Br) was prepared by the ATRP of styrene initiated with the macro‐initiator PEO‐Br, which was obtained from the esterification of PEO and 2‐bromo‐2‐methylpropionyl bromide. An azobenzene‐containing block of PMMAZO with different molecular weights was then introduced into the diblock copolymer by a second ATRP to synthesize the novel side‐chain liquid crystalline ABC triblock copolymer poly(ethylene oxide)‐block‐polystyrene‐block‐poly[6‐(4‐methoxy‐4′‐oxy‐azobenzene) hexyl methacrylate] (PEO‐PS‐PMMAZO). These block copolymers were characterized using proton nuclear magnetic resonance (1H NMR) and gel permeation chromatograph (GPC). Their thermotropic phase behaviors were investigated using differential scanning calorimetry (DSC) and polarized optical microscope (POM). These triblock copolymers exhibited a smectic phase and a nematic phase over a relatively wide temperature range. At the same time, the photoresponsive properties of these triblock copolymers in chloroform solution were preliminarily studied. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4442–4450, 2008  相似文献   

3.
A three‐arm star azo side‐chain liquid crystalline (LC) homopolymer, poly[6‐(4‐methoxy‐4‐oxy‐azobenzene) hexyl methacrylate] (PMMAZO), was synthesized by atom transfer radical polymerization (ATRP) method. The polymerization of 6‐(4‐methoxy‐4‐oxy‐azobenzene) hexyl methacrylate proceeded in a controlled/“living” way. A series of three‐arm star LC block copolymers (PMMAZO‐b‐PMMA) were also synthesized. The polymers were characterized by 1H NMR, gel permeation chromatograph, and UV–vis spectra, respectively. The both polymers of PMMAZO and copolymers of PMMAZO‐b‐PMMA exhibited a smetic phase and a nematic phase. As concern to the PMMAZO, the glass‐transition temperature (Tg) and phase‐transition temperature from the smetic to nematic phase and from the nematic to isotropic phase increased with the increase of molecular weight (Mn(GPC)) of PMMAZO. The phase transition temperature of the block copolymers, PMMAZO‐b‐PMMA, with the same PMMA block was similar to that of PMMAZO. However, the Tg of the PMMAZO‐b‐PMMA decreased at low azo content and then increased with the increasing Mn(GPC) when azo content was above 61.3%. With illumination of linearly polarized Kr+ laser beam at modest intensities (35 mW/cm2), significant surface relief gratings formed on PMMAZO films with different molecular weights were observed. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 777–789, 2008  相似文献   

4.
A series of side‐chain liquid‐crystalline (LC) homopolymers of poly[6‐(4‐methoxy‐4′‐oxy‐azobenzene) hexyl methacrylate] with different degrees of polymerization were synthesized by atom transfer radical polymerization (ATRP), which were prepared with a wide range of number‐average molecular weights from 5.1 × 103 to 20.6 × 103 with narrow polydispersities of around 1.17. Thermal investigation showed that the homopolymers exhibit two mesophases, a smectic phase, and a nematic phase, and the phase‐transition temperatures of the homopolymers increase clearly with increasing molecular weights. A series of novel LC coil triblock copolymers with narrow polydispersities was synthesized by ATRP, and their thermotropic phase behavior was investigated with differential scanning calorimetry and polarized optical microscopy. The LC coil triblocks were designed to have an LC conformation of poly[6‐(4‐methoxy‐4′‐oxy‐azobenzene) hexyl methacrylate] with a wide range of molecular weights from 3.5 × 103 to 1.7 × 104 and the coil conformation of poly(ethylene glycol) (PEG) (number‐average molecular weight: 6000 or 12,000) segment. Their characterization was investigated with 1H NMR, Fourier transform infrared spectra, and gel permeation chromatography. Triblock copolymers exhibited a crystalline phase, a smectic phase, and a nematic phase. The phase‐transition temperatures from the smectic to nematic phase and from the nematic to isotropic phase increased, and the crystallization of PEG depressed with increasing molecular weight of the LC block. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2854–2864, 2003  相似文献   

5.
Two photosensitive chiral liquid crystalline azobenzene‐containing polymethacrylates having different length of flexible spacer connecting chromophores with backbone were synthesized and their phase behavior and photo‐optical properties were studied. Both polymers consist of lateral methyl substituents in ortho‐position of azobenzene chromophores providing high photosensitivity even in red spectral region as well as high thermal stability of photoinduced Z‐form of azobenzene chromophores. It is shown, that smectic phase (SmA*) formation in films of polymer with longer spacer predetermines its quite unusual spectral response to UV and subsequent visible light actions. The SmA* phase promotes spontaneous homeotropic alignment of azobenzene chromophores in polymer films. UV‐irradiation induces not only E‐Z isomerization but also results in disruption of homeotropic alignment, whereas subsequent visible light action enables to obtain films with the low degree of chromophores orientation. The photo‐orientation phenomena under the action of polarized light of different wavelength on polymer films were studied. The possibility of using red polarized light of moderate intensity for optical photorecording on polymer films is demonstrated. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2962–2970  相似文献   

6.
Summary: Based on a hydrophilic poly(ethylene oxide) macroinitiator (PEOBr), a novel amphiphilic diblock copolymer PEO‐block‐poly(11‐(4‐cyanobiphenyloxy)undecyl) methacrylate) (PEO‐b‐PMA(11CB)) was prepared by atom transfer radical polymerization (ATRP) using CuCl/1,1,4,7,10,10‐hexamethyltriethylenetriamine as a catalyst system. An azobenzene block of poly(11‐[4‐(4‐butylphenylazo)phenoxyl]undecyl methacrylate) was then introduced into the copolymer sequence by a second ATRP to synthesize the corresponding triblock copolymer PEO‐b‐PMA(11CB)‐b‐PMA(11Az). Both of the amphiphilic block copolymers had well‐defined structures and narrow molecular‐weight distributions, and exhibited a smectic liquid‐crystalline phase over a wide temperature range.

The amphiphilic triblock copolymer synthesized here.  相似文献   


7.
Novel water‐soluble copolymers containing 4‐difluoro‐4‐bora‐3a,4a‐diaza‐s‐indacene (BODIPY) dyes were synthesized by reversible addition‐fragmentation chain transfer (RAFT) polymerization. The copolymers with both number‐average molecular weight between 5.0 × 103 and 5.8 × 103 and narrow molecular weight distribution (Mw/Mn < 1.19) were obtained by the copolymerization of (2‐dimethylamino)ethyl methacrylate (DMAEMA) and BODIPY‐based methyl methacrylate ( 1 ) with 2,2′‐azobis(isobutyronitrile) (AIBN) as an initiator in the presence of cumyl dithiobenzoate (CDB) as a chain transfer agent (CTA). The structures of the resulting copolymers were characterized by 1H, 13C, and 11B NMR spectroscopies, and the comonomer compositions were good consistent with the feed ratio. Characteristic optical properties of the obtained copolymers were investigated by UV‐vis and PL spectroscopic methods. The copolymers composed of [DMAEMA]: [1] = 98.0:2.0 and 99.4:1.4 led to thermoresponsive polymers having phase separation temperatures at 32 °C and 40 °C, respectively, depending on the compositions of hydrophilic/hydrophobic balances. Further, the effective reversible decrease/increase of the emission intensity of the copolymers led to the reversible formation/inhibition of the H‐aggregation between two BODIPY planes in the copolymers on heating and cooling across the border of LCST. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 627–634, 2010  相似文献   

8.
A novel series of hard‐soft‐hard triblock azo‐copolymers (TBCs) composed of poly(2‐[2‐(4‐cyano‐azobenzene‐4‐oxy)ethylene‐oxy]ethyl methacrylate) (PCEAMA), poly(methyl methacrylate) (PMMA) and poly(p‐dodecylphenyl‐N‐acrylamide) (PDOPAM) were synthesized by employing reversible addition‐fragmentation chain transfer polymerization. Chemical structures and molecular weights were characterized by 1H nuclear magnetic resonance (NMR) and gel permeation chromatography (GPC). Thermal behavior, mesophase, photochemistry and morphology were investigated using differential scanning calorimetry (DSC), optical polarizing microscopy (OPM), ultraviolet–visible spectrophotometry (UV–vis), atomic force microscopy (AFM) and grazing‐incidence small‐angle X‐ray scattering (GISAXS). Kinetic studies confirmed characteristic of controlled/living radical polymerization with low polydispersities (≤1.40). TBCs manifested both endothermic and exothermic transition peaks assigned to smectic to nematic, nematic to smectic, and smectic‐A to smectic‐C phases. TBCs having hight azo fractions of 39 and 34 wt % revealed textures of smectic phase whereas TBC possessing 30 wt % of azo content exhibited poor texture, suggesting nematic phase. Regarding TBC with low azo ratio (25 wt %), neither mesophase texture was found. All TBCs showed photoresponsive behavior under UV–vis irradiation or thermal relaxation. TBC‐1 with PCAEMA (39 wt %), PMMA (40 wt %) and PDOPAM (21 wt %) generated a mixture of cylinder and lamellar nanostructures compared to TBC‐2 and TBC‐3 which formed lamellae. However, TBC‐4 having the highest PDOPAM fraction (50 wt %) produced hexagonal cylindrical nanostructure. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1617–1629  相似文献   

9.
We report the synthesis and investigation of a new type of photoresponsive block copolymers (BCPs). They were designed to comprise two water‐soluble polymers containing two different photoisomerizable moieties (either azobenzene and spiropyran or two different azobenzenes), with the two constituting blocks that, when separated, exhibit a lower critical solution temperature (LCST) in water and can shift their LCST in opposite directions upon photoisomerization (decrease of LCST for one polymer and increase for the other). A variety of such doubly photoresponsive BCPs were synthesized using either azobenzene‐ or spiropyran‐containing poly(N,N‐dimethylacrylamide) (PDMA), poly(N‐isopropylacrylamide) (PNIPAM) and poly[methoxydi(ethylene glycol) methacrylate] (PDEGMMA). Their thermal phase transition behaviors in aqueous solution before and after simultaneous photoreactions on the two blocks were investigated in comparison with their constituting blocks, by means of solution transmittance (turbidity) and variable‐temperature 1H NMR measurements. The results show that BCPs displayed a single LCST whose shift upon two photoisomerizations appeared to be determined by the competing and opposing photoinduced effects on the two blocks. Moreover, optically controlling the relative photoisomerization degrees of trans azobenzene‐to‐cis azobenzene and spiropyran‐to‐merocyanine could be used to tune the LCST of BCP solution. This study demonstrates the potential of exploring a more complex photoreaction scheme to optically control the solution properties of water‐soluble thermosensitive BCPs. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 4055–4066, 2010  相似文献   

10.
4‐Arm star side‐chain liquid crystalline (LC) polymers containing azobenzene with different terminal substituents were synthesized by atom transfer radical polymerization (ATRP). Tetrafunctional initiator prepared by the esterification between pentaerythritol and 2‐bromoisobutyryl bromide was utilized to initiate the polymerization of 6‐[4‐(4‐methoxyphenylazo)phenoxy]hexyl methacrylate (MMAzo) and 6‐[4‐(4‐ethoxyphenylazo)phenoxy]hexyl methacrylate (EMAzo), respectively. The 4‐arm star side‐chain LC polymer with p‐methoxyazobenzene moieties exhibits a smectic and a nematic phase, while that with p‐ethoxyazobenzene moieties shows only a nematic phase, which derives of different terminal substituents. The star polymers have similar LC behavior to the corresponding linear homopolymers, whereas transition temperatures decrease slightly. Both star polymers show photoresponsive isomerization under the irradiation with UV–vis light. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3342–3348, 2007  相似文献   

11.
Graft copolymers of ethyl cellulose with azobenzene‐containing polymethacrylates were synthesized through atom transfer radical polymerization (ATRP). The residual hydroxyl groups on ethyl cellulose were first esterified with 2‐bromoisobutyryl bromide to yield 2‐bromoisobutyryloxy groups, which was then used to initiate the polymerization of 6‐[4‐(4‐methoxyphenylazo)phenoxy]hexyl methacrylate (MMAzo) in the presence of CuBr/N,N,N′,N″,N″‐pentamethylenetriamine (PMDETA) as catalyst and anisole as solvent. The graft copolymers were characterized by gel permeation chromatography (GPC) and 1H‐NMR. The molecular weights of the graft copolymers increased relatively to the macroinitiator, and the polydispersities were narrow. The thermal and liquid crystalline property of the graft copolymers were investigated by differential scanning calorimeter (DSC) and polarizing optical microscope (POM). Photoresponsive property was studied under the irradiation of UV–vis light in THF solution. The graft copolymers have potential applications, including sensors and optical materials. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1653–1660, 2007  相似文献   

12.
On the basis of the concept of mesogen‐jacketed liquid crystalline polymers, a series of new methacrylate monomers, (2,5‐bis[2‐(4′‐alkoxyphenyl) ethynyl] benzyl methacrylate (MACn, n = 4, 6, 8, 10, and 12) and 2,5‐bis[2‐(6′‐decanoxynaphthyl) ethynyl] benzyl methacrylate (MANC10), and their polymers, PMACn (n = 4, 6, 8, 10, and 12) and PMANC10 were synthesized. The bistolane mesogen with large π‐electron conjugation were side‐attached to the polymer backbone via short linkages. Various characterization techniques such as differential scanning calorimetry, wide‐angle X‐ray diffraction, and polarized light microscopy were used to study their mesomorphic phase behavior. The polymer PMACn with shorter flexible substituents (n = 4) forms the columnar nematic (?N) phase, but other polymers with longer flexible tails (n = 6, 8, 10, and 12) can develop into a smetic A (SA) phase instead of a ?N phase. The PMANC10 containing naphthyl can also form a well‐defined SA phase. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

13.
The controlled synthesis and characterization of a range of stimuli responsive cationic terpolymers containing varying amounts of N‐isopropylacrylamide (NIPAM), 3‐(methylacryloylamino)propyl trimethylammonium chloride (MAPTAC), and poly(ethylene glycol)monomethyl methacrylate (PEGMA) is presented. The terpolymers were synthesized using reversible addition‐fragmentation chain transfer (RAFT) polymerization. Compositions of the terpolymers determined using 1H NMR were in close agreement to the theoretical values determined from the monomer feed ratios. GPC‐MALLS was used to analyze the molecular weight characteristics of the polymers, which were found to have low polydispersities (Mw/Mn 1.1–1.4). The phase transitions were studied as a function of PEGMA and NIPAM content using temperature controlled 1H NMR and turbidity measurements (UV‐Vis). The relationship between thermal stability and the comonomer ratio of the polymers was measured using thermogravimetric analysis (TGA). Protein interaction studies were performed to determine the suitability of the polymers for biological applications. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4021–4029, 2008  相似文献   

14.
1‐Alkynes containing azobenzene mesogenic moieties [HC?C(CH2)9? O? ph? N?N? ph? O? R; R = ethyl ( 1 ), octyl ( 2 ), decyl ( 3 ), (S)‐2‐methylbutyl ( 4 ), or (S)‐1‐ethoxy‐1‐oxopropan‐2‐yl ( 5 ); ph = 1,4‐phenyl] were synthesized and polymerized in the presence of a Rh catalyst {(nbd)Rh+[B(C6H5)4]?; nbd = 2,5‐norbornadiene} to yield a series of liquid‐crystalline polymers in high yields (e.g., >75%). These polymers had moderate molecular weights (number‐average molecular weight ≥ 12,000), high cis contents in the main chain (up to 83%), good thermal stability, and good solubility in common organic solvents, such as tetrahydrofuran, chloroform, and dichloromethane. These polymers were thoroughly characterized by a combination of infrared, nuclear magnetic resonance, thermogravimetric analysis, differential scanning calorimetry, polarized optical microscopy, and two‐dimensional wide‐angle X‐ray diffraction techniques. The liquid‐crystalline behavior of these polymers was dependent on the tail group attached to the azobenzene structure. Poly‐ 1 , which had the shortest tail group, that is, an ethyl group, showed a smectic A mesophase, whereas poly‐ 2 , poly‐ 3 , and poly‐ 5 , which had longer or chiral tail groups, formed smectic C mesophases, and poly‐ 4 , which had another chiral group attached to the azobenzene structure, showed a chiral smectic C mesophase in both the heating and cooling processes. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4532–4545, 2006  相似文献   

15.
Bisbenzimidazole copper dichloride complexes (CuBBIMs), when activated with methylaluminoxane, catalyze the random copolymerization of ethylene with acrylates to produce highly linear functional copolymers. To probe the sensitivity of the copolymerization to the catalyst structure, a series of CuBBIM catalysts with various steric, electronic, and geometric ligand characteristics was prepared, including CuBBIMs having benzimidazole ring substituents and ligand backbones of various lengths. Four different acrylates were also evaluated as comonomers (t‐butyl acrylate, methyl acrylate, t‐butyl methacrylate, and methyl methacrylate). Although no obvious ligand‐based influences on copolymerization were identified, the structure of the acrylate comonomer was found to exert significant effects. Copolymers prepared with t‐butyl methacrylate comonomer exhibited the highest ethylene contents (31–63%), whereas those prepared with methyl acrylate contained only minor amounts of ethylene (<15%). Copolymerizations carried out at lowered acrylate feed levels generally had increased ethylene contents but showed smaller yields, lowered molecular weights, and increased branching. Unusual ketoester structures were also observed in the methyl acrylate and methyl methacrylate containing copolymers, suggesting that the acrylate ester group size may be an important controlling factor for copolymerization. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1817–1840, 2006  相似文献   

16.
Optically active homopolymers and copolymers, bearing chiral units at the side chain and end chain, were prepared via atom transfer radical polymerization (ATRP) techniques. The well‐defined optically active polymers were obtained via the ATRP of pregnenolone methacrylate (PR‐MA), β‐cholestanol acrylate (CH‐A), and 20‐(hydroxymethyl)‐pregna‐1,4‐dien‐3‐one acrylate (HPD‐A) with ethyl 2‐bromopropionate as the initiator and CuBr/N,N,N′,N″,N″‐pentamethyldiethylenetriamine as the catalytic system. The experimental results showed that the polymerizations of PR‐MA, CH‐A, and HPD‐A proceeded in a living fashion, providing pendent chiral group polymers with low molecular weight distributions and predetermined molecular weights that increased linearly with the monomer conversion. Furthermore, the copolymers poly(pregnenolone methacrylate)‐b‐poly[(dimethylamino)ethyl methacrylate] and poly(pregnenolone methacrylate‐co‐methyl methacrylate) were synthesized and characterized with 1H NMR, transmission electron microscopy, and polarimetric analysis. In addition, when optically active initiators estrone 2‐bromopropionate and 20‐(hydroxymethyl)‐pregna‐1,4‐dien‐3‐one 2‐bromopropionate were used for ATRPs of methyl methacrylate and styrene, terminal optically active poly(methyl methacrylate) and polystyrene were obtained. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1502–1513, 2006  相似文献   

17.
Three series of poly(pyromellitimide‐ester)s were synthesized from various N,N′‐bis(ω‐hydroxyalkyl)pyromellitimides (HAPMIs) by melt condensation with dicarboxylic acids, including terephthalic acid (TPA), 4,4′‐biphenyldicarboxylic acid (BPDA), and 4,4′‐azobenzenedicarboxylic acid (ABDA). Polymers were characterized by elemental analysis, solubility, inherent viscosity, spectra (IR, 1H‐NMR, 13C‐NMR), and X‐ray diffraction (XRD). Thermal stability and phase transition behaviour were evaluated by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and hot‐stage optical polarized microscopy (HOPM). The d‐spacings, calculated from XRD data, showed an odd‐even effect with varying numbers of methylene spacers. Crystallinity of polymers decreased in the following order: azobenzene > biphenyl > phenyl polymers. Similarly, DSC‐obtained melting temperatures (Tm's) showed an odd‐even effect, and glass transition temperatures (Tg's) decreased with increasing numbers of methylene spacers. Thermal stability decreased as methylene chain length increased. Thermal stability of polymers occurred in the following order: phenyl > biphenyl > azobenzene polymers. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1755–1761, 1999  相似文献   

18.
A series of novel copolymers of trans‐4‐hydroxy‐L ‐proline (Hpr) and α‐ hydroxy acids [D,L ‐mandelic acid (DLMA) and D,L ‐lactic acid (DLLA)] were synthesized via direct melt copolymerization with stannous octoate as a catalyst. These new copolymers had pendant amine functional groups along the polymer backbone chain. The optimal reaction conditions for the synthesis of the copolymers were obtained with 4 wt % stannous octoate at 140 °C under vacuum for 16 h. The synthesized copolymers were characterized by IR spectrophotometry, proton nuclear magnetic resonance, differential scanning calorimetry, and Ubbelohde viscometry. The effects of the kinds of comonomers and the comonomer molar ratio on the polycondensation and glass‐transition temperature (Tg) were investigated. The Tg's of the copolymers shifted to lower temperatures with an increasing comonomer molar ratio. As expected, the Tg's of the NZ‐Hpr/DLMA copolymers were higher than the NZ‐Hpr/DLLA copolymers, the pendant groups on the monomers (NZ‐Hpr) became larger and more flexible, and the Tg's of the resulting polymers declined. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 724–731, 2001  相似文献   

19.
Copolymers containing water‐soluble poly(ethylene glycol) (PEG) side chains and precisely controlled functional microstructures were synthesized by sequence‐controlled copolymerization of donor and acceptor comonomers, that is, styrene derivatives and N‐substituted maleimides. Two routes were compared for the preparation of these structures: a) the direct use of a PEG–styrene macromonomer as a donor comonomer, and b) the use of an alkyne‐functionalized styrenic comonomer, which was PEGylated by copper‐catalyzed alkyne–azide cycloaddition after polymerization. The latter method was found to be the most versatile and enabled the synthesis of high‐precision copolymers. For example, PEGylated copolymers containing precisely positioned fluorescent (e.g. pyrene), switchable (e.g. azobenzene), and reactive functionalities (e.g. an activated ester) were prepared.  相似文献   

20.
Hetero‐arm star ABC‐type terpolymers, poly(methyl methacrylate)‐polystyrene‐poly(tert‐butyl acrylate) (PMMA‐PS‐PtBA) and PMMA‐PS‐poly(ethylene glycol) (PEG), were prepared by using “Click” chemistry strategy. For this, first, PMMA‐b‐PS with alkyne functional group at the junction point was obtained from successive atom transfer radical polymerization (ATRP) and nitroxide‐mediated radical polymerization (NMP) routes. Furthermore, PtBA obtained from ATRP of tBA and commercially available monohydroxyl PEG were efficiently converted to the azide end‐functionalized polymers. As a second step, the alkyne and azide functional polymers were reacted to give the hetero‐arm star polymers in the presence of CuBr/N,N,N′,N″,N″‐pentamethyldiethylenetriamine ( PMDETA) in DMF at room temperature for 24 h. The hetero‐arm star polymers were characterized by 1H NMR, GPC, and DSC. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5699–5707, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号