首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Abstract

Using different types and concentrations of crosslinkers, acrylamide (AAm) hydrogels have been prepared with chemical initiation and gamma irradiation techniques. The effects of the preparation method, crosslinkers type and concentration on swelling behavior of AAm hydrogels were investigated. Swelling was performed in distilled water and followed gravimetrically. Swelling parameters such as equilibrium swelling degree, equilibrium water content (EWC), maximum swelling, initial swelling rate, diffusion exponent and coefficient, and network parameters such as molecular mass between crosslinks, crosslink density, mesh size, and porosity were calculated and evaluated. The range of equilibrium swelling degree of AAm hydrogels was varied from 255% to 1450% depending upon the preparation method, crosslinker type, and crosslinker concentration. The diffusion of water into AAm hydrogels was found to be nonFickian.  相似文献   

2.
This work describes the synthesis and macromolecular reactions of citraconic anhydride (CA)–acrylamide (AAm) binary reactive copolymers with γ‐aminopropyltriethoxysilane (APTS) as a polyfunctional crosslinker. Copolymers with given composition of poly(CA‐alt‐AAm) were synthesized by radical binary copolymerization with benzoyl peroxide (BPO) as an initiator in benzene at 70°C in nitrogen atmosphere with initial monomer ratio 1 : 1. It was shown that the network structure is formed in poly(CA‐alt‐AAm)/APTS in water by intermolecular reactions between the anhydride unit and the amine group, as well as between the ethoxysilyl fragment and free carboxyl groups of the CA unit and amide unit of AAm. Swelling parameters such as beginning time of the hydrogel‐formation, initial rate of the swelling, swelling rate constant, equilibrium swelling and equilibrium water content were determined for the copolymer/APTS/water system with certain (2.75 : 1) copolymer/crosslinker ratio. Formation of a hyperbranched network structure through the fragmentation of side‐chain reactive groups in studied systems was confirmed by Fourier transform infrared spectroscopy (FT‐IR) method. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

3.
An improved, simple, and efficient method for the synthesis of lactose‐containing monomer acrylamidolactamine (LAM) has been reported. Free radical copolymerization of this monomer with N‐isopropylacrylamide (NIPAM) in the presence of the crosslinking reagent N,N′‐methylenebisacrylamide (BisA) (1.2 mol %) proceeded smoothly in an aqueous solution using potassium persulfate (KPS) and N,N,N′,N′‐tetramethylethylenediamine (TMEDA) as the initiating system and gave transparent hydrogels. Reactivity ratios were estimated from copolymerization reactions carried out in solution without BisA crosslinker and at low conversion, by using both linearization and nonlinearization methods. They were found to be rLAM = 0.75 and rNIPAM = 1.22. The swelling behavior of the hydrogels was studied by immersion of the hydrogels in deionized water at different temperatures. Equilibrium water uptake was increased when the LAM content was higher than 47 mol %, and reached ≈ 44‐fold with 100 mol % LAM at room temperature. Depending on the composition, the gels showed sharp swelling transitions with small changes in temperature. Differential scanning calorimetry (DSC) was used to characterize the swelling transition and the organization of water in the copolymer hydrogels. The amounts of freezable water in these hydrogels ranged from 81 to 89%, and was not correlated to the content of the sugar monomer. These gels have potential applications as biocompatible materials. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1393–1402, 1999  相似文献   

4.
Thermoresponsive hydrogels based on N-isopropylacrylamide, N-hydroxymethylacrylamide, and 2-hydroxyethyl methacrylate, poly(NIPAM–co-NHMAAm–co-HEMA), have been synthesized and their swelling—deswelling behavior studied as a function of NIPAM concentration, NIPAM/NHMAAm and NIPAM/HEMA mole ratio, and total monomer concentration. Copolymers varying in composition have been obtained by redox copolymerization of these three monomers. Temperature has been changed in the ranges from 4 to 70 °C at fixed pH and total ionic strength. Equilibrium swelling ratio, dynamic swelling ratio, and dynamic deswelling ratio were evaluated for all hydrogel systems. The equilibrium swelling ratios of the copolymeric gels decrease with increasing NHMAAm and HEMA content. The formation of the intermolecular hydrogen bonding between hydroxyl and amido groups decreases the hydrophilic group numbers of the gel and the affinity of the gel towards water decreases. The copolymer gels also showed rapid volume transitions with time. The time required for equilibrium shrinking increased with increasing NHMAAm and HEMA content in the gel.  相似文献   

5.
Poly(acrylamide‐co‐acrylic acid)/polyacrylamide [P(AM‐co‐AA)/PAM] hydrogel with superporous and interpenetrating network (IPN) structure was prepared by a prepolymerization reaction and a synchronous polymerization reaction and frothing process. Scanning electron microscope (SEM) images show that the resultant hydrogel possesses abundant interconnected pores. DSC indicates that the porous structure enhances the swelling ratio and reduces the interaction between water and the hydrogel. In contrast, the IPN by PAM decreases water absorbency and enhances water retentivity. It is found that a superporous stucture in the hydrogel increases the equilibrium swelling ratio and decreases the compressive strength of the hydrogel. On the other hand, the increase in AM oligomer (oligo‐AM) amount decreases the equilibrium swelling ratio and improves the compressive strength of the hydrogel. Therefore, the two‐steps synthesis method can be used to construct a hydrogel with superporous and IPN structure. The swelling and mechanical properties of the hydrogel can be improved effectively. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
In an attempt to improve the mechanical properties of extended chain polymers such as poly(p-phenylene terephthalamide) (PPTA), a crosslinkable terephthalic acid derivative (XTA) has been developed which can be incorporated into copolymers in various concentrations and activated after polymerization. The crosslinking of PPTA-co-XTA copolymer particles was investigated through a series of swelling experiments in concentrated H2SO4. The data show a systematic decrease in equilibrium swelling with increasing XTA content, indicating the XTA units are in fact acting as crosslink sites. Values for crosslink density were calculated from the Flory-Rehner theory of polymer swelling and compared with previous findings on crosslinked rigid polymer network systems. The effective number of crosslinks per XTA unit (efficiency) predicted by the Flory-Rehner theory increases and then decreases with % XTA. The decrease in crosslinking efficiency at high XTA concentrations is consistent with differential scanning calorimetry data which show the enthalpy of XTA reaction decreasing slightly with % XTA. The deviations at low % XTA may represent a failure of the Flory-Rehner theory to properly describe the rubbery elasticity of extended chain polymers. © 1994 John Wiley & Sons, Inc.  相似文献   

7.
Tannic‐acid‐based low volatile organic compound‐containing waterborne hyperbranched polyurethane was prepared. In order to improve the performance, it was modified in an aqueous medium using a glycerol‐based hyperbranched epoxy and vegetable‐oil‐based poly(amido amine) at different wt%. The combined system was cross‐linked by heating at 100°C for 45 min. Fourier transform infrared spectroscopy and swelling study were used to confirm the curing. A dose‐dependent improvement of properties was witnessed for the thermoset. Thermoset with 30 wt% epoxy showed excellent improvements in mechanical properties like tensile strength (~3.4 fold), scratch hardness (~2 fold), impact resistance (~1.3 fold), and toughness (~1.7 fold). Thermogravimetric analysis revealed enhancement of thermal properties (maximum 70°C increment of degradation temperature and 8°C increment of Tg). The modified system showed better chemical and water resistance compared with the neat polyurethane. Biodegradation study was carried out by broth culture method using Pseudomonas aeruginosa as the test organism. An adequate biodegradation was witnessed, as evidenced by weight loss profile, bacterial growth curve, and scanning electron microscope images. The work showed the way to develop environmentally benign waterborne polyurethane as a high‐performance material by incorporating a reactive modifier into the polymer network. Use of benign solvent and bio‐based materials as well as profound biodegradability justified eco‐friendliness and sustainability of the modified system. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
Novel pH-sensitive hydrogels containing azoaromatic crosslinks were synthesized by the crosslinking of polymeric precursors. First, a reactive polymeric precursor was synthesized by copolymerization of N,N-dimethylacrylamide, N-tert-butylacrylamide, acrylic acid, and N-methacryloylglycylglycine p-nitrophenyl ester. The hydrogel was prepared in the second step by the reaction of the polymeric precursor with N,N′-(ω-aminocaproyl)-4,4′-diaminoazobenzene. The hydrogels were characterized by the network structure, (that is, content of crosslinks, unreacted pendent groups, and cycles), the equilibrium swelling ratio as a function of pH, modulus of elasticity in compression, and the degradability in vitro. The results obtained indicated that the hydrogel network structure strongly depends on the reaction conditions such as polymer concentration, and the ratio of the reactive groups during the crosslinking reaction. The swelling and mechanical properties of hydrogels can be controlled by the modification of polymer backbone structure and/or the crosslinking density. The rates of hydrogel degradation depended on their degree of swelling. The higher the degree of swelling, the higher the degradability. The properties of the hydrogels suggest that they have a potential as carriers for colon-specific drug delivery. © 1994 John Wiley & Sons, Inc.  相似文献   

9.
A method for finding the chemical potential for an electronic system with density ρ = Σρi represented within the Kohn–Sham approximation is proposed. To find the chemical potential of the system under consideration, we propose to refer to the definition μ = δEρ and to apply the mathematical properties of functional derivatives. Particularly, in the case examined, the result μ = μ( r ) ≠ const has been obtained, which may be explained in the framework of the calculus of variation. Taking the limit limr→∞ μ( r ) as the best approximation to the proper equilibrium chemical potential of a free atom, one obtains μ = ?I, where I denotes first ionization energy. A possibility of further applications of the proposed method in relation to crystalline systems is also discussed. © 1994 John Wiley & Sons, Inc.  相似文献   

10.
Dual temperature‐ and pH‐sensitive hydrogels composed of N‐isopropylacrylamide (NIPAM) and 2‐acrylamido‐2‐methyl‐propanosulfonic acid (AMPS) were prepared by free‐radical crosslinking copolymerization in aqueous solution at 22 °C. The mole percent of AMPS in the comonomer feed was varied between 0.0 and 7.5, while the crosslinker ratio was fixed at 5.0/100. The effect of AMPS content on thermo‐ and pH‐ induced phase transitions as well as equilibrium swelling/deswelling, interior morphology and network structure was investigated. The volume phase transition temperature (VPT‐T) was determined by both swelling/deswelling measurements and differential scanning calorimetry (DSC) technique. In addition, the volume phase transition pH (VPT‐pH) was detected from the derivative of the curves of the swelling ratio (dQv/dpH) versus pH. The polymer‐solvent interaction parameter (χ) and the average molecular mass between crosslinks ( ) of hydrogels were calculated from swelling ratios in buffer solutions at various pHs. The enthalpy (ΔH) and entropy (ΔS) changes appearing in the χ parameter of hydrogels were also determined by using the modified Flory–Rehner equation. The negative values for ΔH and ΔS indicated that the hydrogels had a negative temperature‐sensitive property in water, that is, swelling at a lower temperature and shrinking at a higher temperature. It was observed that the experimental swelling data of hydrogels at different temperature agreed with the modified Flory‐Rehner approach based on the affine network model. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1713–1724, 2008  相似文献   

11.
Measurements of the equilibrium degree of swelling and of the equilibrium modulus were performed on poly(dimethylsiloxane) networks (PDMS) and on polyisoprene vulcanizates. The results support the concept that topological interactions between network chains, e.g. entanglements or the like, have a large influence on the rubber elastic behavior, at least within a certain range of network densities.PDMS networks having network chains of different lengths and varying functionlities of the crosslinks were prepared in bulk by endlinking fractionated ,-divinyl PDMS via multifunctional hydrogen-siloxanes (f=3 to 22). Natural rubber (NR) and synthetic liquid polyisoprene (IR) were cured in bulk with various amounts of dicumyl peroxide to give randomly crosslinked samples.The experimentally determined moduli and degrees of swelling were compared with theoretical predictions based on the phantom network theory and affine network theory, taking into account only chemical crosslinks. The observed discrepancies can be traced back to a contribution of topological interactions (trapped entanglements) to the total effective network density. The modulus and swelling data are consistent, thus ruling out non-equilibrium effects.  相似文献   

12.
Polyacrylamide grafted poly(vinyl alcohol)/polyvinylpyrrolidone (PAM-g-PVA/PVP) semi-interpenetrating polymer network (semi-IPN) hydrogels were designed and prepared via a simple free radical polymerization route initiated by a PVA-(NH4)2Ce(NO3)6 redox reaction technique. The structure of the PAM-g-PVA/PVP hydrogels was characterized by a Fourier transform infrared spectroscope (FTIR), and the morphologies were observed by a scanning electron microscopy (SEM). The swelling kinetics investigations demonstrated that the equilibrium swelling (Q e ) of the (PAM-g-PVA/PVP) semi-IPN hydrogels depended on PVP compositional ratios and temperature. The Q e values were reduced with increasing the PVP contents, which was in agreement with theoretical water contents (S ) fitted by swelling kinetic data, and the swelling mechanism belonged to a non-Fickian mode for the PAM-g-PVA/PVP hydrogels. These hydrogels displayed thermosensitivities different from the common thermoresponsive gels that have a lower critical solution temperature. The swelling is enhanced with increasing the temperature of the media before 42°C, and later the equilibrium swelling is contrarily reduced. Therefore, the swelling behavior of the PAM-g-PVA/PVP hydrogels may be controlled and modulated by means of the compositional ratios of PVP to PAM-g-PVA and temperature.  相似文献   

13.
Flame retardants from vanillin when utilized together with ammonium polyphosphate (APP) yield excellent synergistic flame retardancy toward epoxy resins. Bisphenol A epoxy resins have been widely used due to their excellent mechanical properties, chemical resistance, electrical properties, adhesion, etc., while they are flammable. Environment‐friendly and bio‐based flame retardants have captured increasing attention due to their ecological necessity. In this paper, 3 bio‐based flame retardants were synthesized from abundant and more importantly renewable vanillin, and their chemical structures were determined by 1H NMR and 13C NMR. They were used together with APP (an environment‐friendly commercial flame retardant) to improve the fire resistance of bisphenol A epoxy resin. With the addition APP content of 15 phr, the modified bisphenol A epoxy resin could reach UL‐94V0 rating during vertical burning test and limit oxygen index values of above 35%, but reducing APP content to 10 phr, the flame retardancy became very poor. With the total addition content of 10 phr, the epoxy resins modified by 7 to 9 phr APP and 1 to 3 phr bio‐based flame retardants with epoxy groups or more benzene rings showed excellent flame retardancy with UL‐94V0 rating and limit oxygen index values of around 29%. The Tgs of the epoxy resins could be remained or even increased after introducing bio‐based flame retardants, as the control; those of APP alone‐modified epoxy resins compromised a lot. The green synergistic flame‐retardant systems have a great potential to be used in high‐performance materials.  相似文献   

14.
The dimensional stability of regenerated cellulose film on swelling with water is discussed in relation to the biaxial orientation of the two kinds of structural units, cellulose II crystallites and noncrystalline chain segments, and their anisotropic swelling (anisotropic absorption of water). Considerable dimensional stability in the plane of the film but enormous instability of thickness on swelling in water of some commercial cellophanes is qualitatively interpreted in terms of the planar orientation of crystal (101) planes along the film surface and the orientation of the noncrystalline chain segments parallel to the film surface. The dimensional changes on swelling from the completely dry state to 10% moisture regain were further interpreted quantitatively in terms of the degrees of biaxial orientation of the two kinds of structural units and their degrees of anisotropic swelling by modifying the Hermans monophase model for crystalline and noncrystalline biphase structures. The following degrees of anisotropic swelling of the structural units were thus obtained: qc, [101] = 0.40%, qc, [101 ] = ?0.33%, and qa = 2.42%.  相似文献   

15.
Hydrogels were prepared by the cross-linking reactions of carboxymethyl cellulose with di- or polyfunctional glycidyl ether to investigate the effects of different cross-linker’s chain length and the number of epoxy groups on the properties of the gels. Fourier transform infrared spectra showed a new peak at ν = 1,740 cm−1 assigned to the absorption of carbonyl groups in the new ester structure formed by the cross-linking of –COONa with the epoxy compounds. The interior morphology data indicated microporous network structures which correlated with the swelling of hydrogels. The swelling data in water, urea, sucrose, urine and aspartame showed increases in swelling with an increase in chain length of the cross-linker but decreased with the number of epoxy groups on the cross-linker. Collectively, the gels were ionic strength sensitive. The rheology experiments showed that gel point (t gel) increased with the chain length of the cross-linker but reduced with increase in number of epoxy groups on the cross-linker. Dynamic oscillatory measurements indicated stronger material functions in gels prepared with polyfunctional epoxy cross-linkers. The hydrogels prepared with difunctional epoxy groups had higher loading capacity and faster release of bovine serum albumin compared with hydrogels based on polyfunctional epoxy group cross-linkers.  相似文献   

16.
N‐vinyl‐2‐pyrrolidone (VP) and 2‐hydroxyethyl methacrylate (HEMA) copolymeric gels have been synthesized using UV‐initiated photopolymerization to understand their characteristic behavior for development as a bioengineering material, specifically for tissue expansion. The properties of the gels have been investigated by systematic variation of the monomer feed composition and initiator and crosslinker concentrations as well as UV irradiation intensity, which was controlled by various photomasks. The swelling kinetics and network characteristics for the various hydrogels were investigated through the observation of gel swelling behavior in saline solutions and compression modulus determination of the fully swollen hydrogels. The equilibrium swelling ratio (qe) of the gels increased as expected with increasing VP content and decreasing crosslinker concentration. However, it was found that as the amount of initiator or UV intensity increased, unexpectedly qe also increased, which indicates a network structure with decreasing effective crosslink density (νe) (or increasing average molecular weight between crosslinks (Mc)). Based on this anomalous swelling behavior and thermal analysis of the gels, a molecular structure is proposed consisting of increasing number of dangling chain ends within the polymer network. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1450–1462, 2008  相似文献   

17.
The crystallinity, morphology and water swelling of a series of hydrogels based on poly(ethylene glycol)s (PEG), ¯n = 1610–8490 crosslinked by 1,2,6-hexanetriol and the stoichiometric equivalence of dicyclohexylmethane-4,4′-diisocyanate as coreactant to form an infinite urethane-linked network are examined. The equilibrium water uptake was found to be directly related to the ethylene oxide content irrespective of either ¯n(PEG) or the degree of crosslinking. Crystallinity affects the rate of swelling in water. Caffeine was incorporated into slices of hydrogels over a wide range of compositions and water contents by swelling with a solution of the drug. After drying then reswelling to desorb the caffeine the release profiles were drawn, and morphological factors contributing to the bolus and period of zero - order release are propounded.  相似文献   

18.
Poly(acrylic acid)‐l‐polytetrahydrofuran (PAA‐l‐PTHF) and poly(methacrylic acid)‐l‐polytetrahydrofuran (PMAA‐l‐PTHF) networks were synthesized by the free‐radical copolymerization of hydrophobic polytetrahydrofuran diacrylates with hydrophilic acrylic acid and methacrylic acid. Their swelling behavior was studied. Both PAA‐l‐PTHF and PMAA‐l‐PTHF networks had four solubility parameters, which indicated that they exhibited not only the properties of both hydrophobic and hydrophilic segments but also the combined properties of these two segments. The swell of these two series of networks was composition‐dependent in organic solvents and water. The relationship between the equilibrium swelling ratio (SRe) in nonpolar solvents and the composition of the networks [the weight fraction of the PTHF segment (PTHF%)] may be expressed with a linear equation: SRe = A × PTHF% + B. A and B are parameters that relate to the interaction of hydrophilic and hydrophobic segments with nonpolar solvents and to the properties of the networks, respectively. Because of the presence of a ? COOH group, these two network series were pH‐sensitive when the content of hydrophilic segments was higher. The pH sensitivity of networks could be controlled not only by the composition of the networks but also by the hydrophobic degree of the hydrophilic segments. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 1784–1790, 2001  相似文献   

19.
Novel interpenetrating network (IPN) hydrogels (PNIPAAm/clay/PAAm hydrogels) based on poly(N‐isopropylacrylamide) (PNIPAAm) crosslinked by inorganic clay and poly(acrylamide) (PAAm) crosslinked by organic crosslinker were prepared in situ by ultraviolet (UV) irradiation polymerization. The effects of clay content on temperature dependence of equilibrium swelling ratio, deswelling behavior, thermal behavior, and the interior morphology of resultant IPN hydrogels were investigated with the help of Fourier transform infrared spectroscopy, differential scanning calorimeter (DSC), scanning electron microscope (SEM). Study on temperature dependence of equilibrium swelling ratio showed that all IPN hydrogels exhibited temperature‐sensitivity. DSC further revealed that the temperature‐sensitivity was weakened with increasing amount of clay. Study on deswelling behavior revealed that IPN hydrogels had much faster response rate when comparing with PNIPAAm/clay hydrogels, and the response rate of IPN hydrogels could be controlled by clay content. SEM revealed that there existed difference in the interior morphology of IPN hydrogels between 20 [below lower critical solution temperature (LCST)] and 50 °C (above LCST), and this difference would become obvious with a decrease in clay content. For the standpoint of applications, oscillating swelling/deswelling behavior was investigated to determine whether properties of IPN hydrogels would be stable for potential applications. Bovine serum albumin (BSA) was used as model drug for in vitro experiment, the release data suggested that the controlled drug release could be achieved by modulating clay content. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 96–106, 2009  相似文献   

20.
The energy component of the stress has been determined for poly(vinyl alcohol) networks in swelling equilibrium with a series of water–ethylene glycol compositions. The data are analyzed by using the equations describing the thermoelasticity of networks in swelling equilibrium. The ratio fe/f of the energy component to the total force, as calculated from these equations, varies systematically with diluent composition but is independent of elongation in a given diluent. For a network crosslinked by terephthalaldehyde, fe/f varied from ?0.33 to ?0.42 as the diluent composition was changed from pure water to 20% ethylene glycol. Similar effects were found in a network crosslinked by formaldehyde. It is not yet certain whether this effect represents a real solvent dependence of fe/f or a failure of the equation of state to account for the effect of composition changes on the force.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号