首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
The potential energy curves (PECs) are calculated for the 20 Λ-S states (X2Πg, A2Πu, B2Σ?g, a4Πu, b4Σ?g, b′4Πg, c4Σ?u, 12Σ+g, 12Σ+u, 12Σ?u, 14Σ+g, 14Σ+u, 14Δg, 14Δu, 16Σ+g, 16Σ+u, 16Πg, 16Πu, 24Πg and 24Πu) of O2+ cation and their corresponding 58 Ω states. Of these 20 Λ-S states, the 16Πu state is found to be repulsive. The 12Σ+g, 14Σ+u, c4Σ?u and 14Δu states are found to possess the double well. The b4Σ?g, 16Σ+g, 14Σ+u, a4Πu, A2Πu, 16Πg and 24Πg states are found to be inverted with the spin–orbit coupling effect included. The b′4Πg, 16Πg, 16Σ+g, 14Σ+u and 14Δu states, and the second well of the 12Σ+g state are found to be the weakly bound states. The b′4Πg state is found to possess one well with one barrier. The PECs are calculated by the complete active space self-consistent field method, which is followed by the internally contracted multireference configuration interaction approach with the Davidson correction in combination with the aug-cc-pV6Z basis set. The core–valence correlation and scalar relativistic corrections are included. The convergent behaviour of present calculations is discussed with respect to the basis set and theoretical level. The spin–orbit coupling effect is accounted for. The PECs are extrapolated to the complete basis set limit. The spectroscopic parameters are evaluated, and compared with available measurements. It demonstrates that the spectroscopic parameters reported here can be expected to be reliably predicted ones.  相似文献   

2.
Multireference configuration interaction (MRCI) and complete active space second-order perturbation theory (CASPT2) calculations are performed on Fe2 and Fe? 2. Although it is not possible to definitively identify the ground states of Fe2 and Fe? 2, the calculations suggest that the ground state of Fe? 2 in 8Σ? u derived from 3d132 g2 u and that the states observed in photodetachment are the 9Σ? g and 7Σ? g states with a 3d132 g1 u occupation, but that the ground state of Fe2 is 7Δu(3d142 g) and is not observed in the photo-detachment spectra.  相似文献   

3.
使用对称性匹配簇-组态相互作用方法首次计算了Li2分子自旋一致激发态a3Σ+u和b3Πu的离解能、平衡几何及其谐振频率。使用最小二乘法、利用Murrell-Sorbie函数形式拟合出了Li2分子三重态的第一激发态a3Σ+u 和第二激发态b3Πu的完整势能函数,并计算了这两个态的光谱常数 (Be, αe, ωe 和 ωeχe) 和力常数 (f2, f3和f4)。得到了Murrell-Sorbie函数形式既适用于基态、又适用于激发态的结论。将计算得到的激发态(a3Σ+u和b3Πu)的离解能、平衡几何及其谐振频率与实验结果及其它理论计算结果进行了比较。从比较的结果中可以清楚地看出,本文的计算结果在计算精度方面有很大的改进。  相似文献   

4.
The analytical potential energy functions have been calculated for the ground state X1Σ+g and four excited electronic states a1Πg, A3Σ+u, B3Σ?u and B3Πg of N2 molecule using the algebraic and energy-consistent methods (AM-ECM). Based on our previously published full AM vibrational energies and spectroscopic constants, the low-lying force constants fn, the expansion coefficients an and the variational parameters λ in the AM–ECM potentials are determined for these states. The computed AM–ECM potential energy curve of each state is in excellent agreement with the experimental data and better than other analytical potentials.  相似文献   

5.
Potential energy curves were calculated for the ground state of PN and for all excited singlet and triplet states resulting from the 2π → 3π, 7σ → 3π, 2π → 8σ, and 7σ → 8σ orbital excitations. CI studies at 4 Å served to establish dissociation energies. Spectroscopic constants were calculated, and are in good agreement with those of the known X1Σ+ and A1Π states. Overall, their similarity with those observed for N2 is striking. Various states considered to perturb the known excitations are discussed. The recently discovered second 1Σ+ state is included.  相似文献   

6.
A detailed numerical study has been made of the convergency of second-and approximate second-order multiconfigurational Hartree-Fock procedures. Calculations were performed on the excited 2p 2 1 S state of Be and on the lowest states of 3Σ g -, 1δ g , 1Σ g +, 1Δ g and 3Δ g symmetry in O2. The O2 calculations included all configurations that could be formed from doubly occupied core orbitals with eight electrons in the valence orbitals, 3σ g , 1π u , 1π g and 3σ u . All second-order calculations converged in between 4 and 6 iterations even for a case where approximate second-order procedures did not converge.  相似文献   

7.
Results of ab initio calculations of potential-energy curves for 20 singlet and 20 triplet valence states of oxygen with configuration interaction taken into account in the 6-31G basis are presented. Transition dipole moments of triplet-triplet (13ΠgB 3Σ u ? , 13ΠgA 3Σ u + , 13ΠgA3Δu, B 3Σ u ? X 3Σ g ? , 23Πu ← 13Π g, 23Σ g ? B 3Σ u ? , 13ΠuX 3Σ g ? , 23ΠuX 3Σ g ? , 23Π gA3Δu, 33ΠgA3Δ u, 23Δu ← 23Πg, 33ΠgB 3Σ u ? , and 23ΠgA 3Σ u + ) and singlet-singlet (21Σ g + ← 21Πu, 21Πu ← 11Π g, 1Πu ← 21Δg, 11Πgc 1Σ u ? , 1Πub 1Σ g + , 11Δ ua 1Δg, 21Πua 1Δg, 21Δg ← 11Δu, 1Π ua 1Δ g, 11Πub 1Σ g + , 21Πg ← 11Πu, 21Π gc 1Σ u ? , 11Δ u ← 11Π g, f′Σ u + b 1Σ g + , 21Σ g + f1Σ u + , 31Πg ← 11Δu) radiative transitions are calculated as functions of internuclear separation. The possibility of observing these transitions under experimental conditions is discussed.  相似文献   

8.
The potential energy curves (PECs) of the X3Σg, D3Πu, a1Δg, b1Πu, H′3Σu, K3Σu, 13Σu+, 13Πg, 23Σu+, 23Πg, 33Πg, 33Σu+, 23Πu and 23Σg electronic states of the Si2 molecule are investigated using the complete active space self-consistent field (CASSCF) method followed by the valence internally contracted multireference configuration interaction (MRCI) approach with the correlation-consistent basis sets of Dunning and co-workers. The effects on the PECs by the core-valence correlation and relativistic corrections are included. The way to consider the relativistic correction is to use the third-order Douglas-Kroll Hamiltonian approximation. The core-valence correlation correction is made with the aug-cc-pCV5Z basis set. And the relativistic correction is performed at the level of cc-pV5Z basis set. To obtain more reliable results, the PECs determined by the MRCI calculations are also corrected for size-extensivity errors by means of the Davidson modification (MRCI+Q). The PECs of all these electronic states are extrapolated to the complete basis set limit by the total-energy extrapolation scheme. Using the PECs, the spectroscopic parameters are determined and compared with those reported in the literature. With these PECs determined by the MRCI+Q/CV+DK+56 calculations, the vibrational levels and inertial rotation constants of the first 20 vibrational states are evaluated and compared with the RKR data for these electronic states when the rotational quantum number J equals zero. On the whole, as expected, the most accurate spectroscopic parameters and molecular constants of the Si2 molecule are determined by the MRCI+Q/CV+DK+56 calculations. And the spectroscopic parameters of the 13Σu+, 13Πg, 23Σu+, 23Πg, 33Πg, 33Σu+, 23Πu and 23Σg electronic states obtained by the MRCI+Q/CV+DK+56 calculations should be good prediction for future laboratory experiment.  相似文献   

9.
Alternative expressions for vibrational and rotational spectrum constants and energies of diatomic molecular electronic states based on perturbation theory are suggested. An algebraic method (AM) is proposed to generate a converged full vibrational spectrum from limited energy data, and a potential variational method (PVM) is suggested to produce the vibrational force constants fn and rotational spectrum constants using the perturbation formulae and the AM vibrational constants. The AM and PVM have been applied to study 10 diatomic electronic states: the X1Σg+ and C1Πu states of H2; the X1Σg+, A3Σu+, B3Σu, and B3Πg states of N2; the X3Σg, A3Σu+, and c1Σu states of O2; and the X1Σg+ state of Br2. Calculations show that (1) the AM Eυmax converges to the correct molecular dissociation energy; (2) the AM not only reproduce the input energies, but also generate the Eυ's of high vibrational excited states which may be difficult to obtain experimentally or theoretically; (3) the PVM vibrational force constants fn may be used to measure the relative chemical bondstrengths of different diatomic electronic states for a molecule quantitatively.  相似文献   

10.
The fine structure constant (electron spin-spin coupling) and the hyperfine structure parameters (electron-nuclear spin coupling, including spin-rotation and electron-nuclear quadrupole coupling) in the low-lying triplet states b3Σ+ u, a3Σ+ g and e3Σ+ u of molecular hydrogen and deuterium are calculated using a recently developed technique with full configuration interaction and multiconfiguration self-consistent field wave functions. The second-order spin-orbit coupling contribution to the 3Σ+ states splitting is negligible, and the calculations therefore provide a good estimate of the zero-field splitting based only on the electron spin-spin coupling values. For the bound a3Σ+ g state a negligible zero-field splitting is found, in qualitative agreement with the e-a spectrum. The zero-field splitting parameter is considerable for the repulsive b3Σ+ u state (?1 cm?1) and of intermediate size for the bound e3Σ+ u state. The isotropic hyperfine coupling constant is very large not only for the valence b3Σ+ u state (1580 MHz) but also for the Rydberg a and e triplet states (?1400 MHz). The quadrupole coupling constants for the deuterium isotopes are negligible (0.04–0.07 MHz) for all studied triplet states. The electric dipole activity of the spin sublevels in the triplet-singlet transitions to the ground state is estimated by means of the quadratic response technique.  相似文献   

11.
The energies of the ground 4f n levels of tri- and divalent rare-earth ions with respect to the conduction and valence bands of Gd2O2S crystal has been determined. It is shown that the Pr3+, Tb3+, and Eu3+ ions can be luminescence centers in Gd2O2S. The levels of the Nd3+, Dy3+, Er3+, Tm3+, Sm3+, and Ho3+ ions lie in the valence band; therefore, these ions cannot play the role of activators. The ground 4f level of the Ce3+ ion is near the midgap, due to which Ce3+ effectively captures holes from the valence band and electrons from the conduction band and significantly decreases the afterglow level of the Gd2O2S:Pr and Gd2O2S:Tb phosphors.  相似文献   

12.
A new optogalvanic technique with an rf discharge was applied to a high-resolution study of the Rydberg states of N2. The Ledbetter band, c4(0)1Πua″(0)1Σg+, and a new visible band, c5(0)1Σu+a″(0)1Σg+, were studied at a Doppler-limited resolution of 0.05 cm?1. A Doppler-free method was also applied to resolve overlapped lines. Precise wavenumbers were determined for the rotational transitions of the two Rydberg bands. The rotational and the centrifugal constants for the lowest Rydberg state, a″(0)1Σg+, were determined to be B0 = 1.913748(42) cm?1 and D0 = 6.088(99) × 10?6 cm?1, where the numbers in parentheses are the standard deviation and apply to the last digits.  相似文献   

13.
Ab initio multireference configuration interaction calculations including spin-orbit coupling have been carried out for the first time for valence electronic states of the TeX (X = Cl, Br, I) radicals and compared with the results for the isovalent TeF and IO systems obtained earlier at a similar level of theoretical treatment. The calculated spectroscopic constants are in good agreement with experimental data in the rare cases when the latter are available. It is shown that the X2 II(σ2π4π?3) ground state bonding becomes consistently weaker down the TeX group (calc. De, = 25480cm?1 for TeF, 12 100cm?1 for Tel) due to the more covalent character of bonding in the heavier radicals. The first excited state, A 4Σ? (π?→ σ?), is calculated to be bound in all systems. It is split into Ω 1/2 and 3/2 components, with regular ordering in the Franck-Condon region, opposite to that of the ground X2II state. For larger internuclear distances, the A1 4Σ? 1/2 state undergoes an avoided crossing with X2 2II1/2, which causes a shoulder in the X2 potential curve and also leads to a crossing between the A1, and A2 curves and large distinctions in their vibrational frequencies. The π? → σ? B2Σ?, C2δ, and 1 2Σ+ states are calculated to lie next in energy. They are all bound in the lightest of the TeX radicals, TeF, but successively lose their bonding character down the group. In contrast to oxygen monohalides, the 22II(σ2π3 π?4) state has a repulsive potential curve. Electric dipole transition moments and radiative lifetimes have also been calculated for the low lying bound states in all systems. Most of them are found to be quite weak. The A1,2 → X1,2 spectra are dominated by parallel contributions, with the A2 → X1 being the strongest one. The T values for this transition are quite similar and lie in the 17–30 μs range. Radiative lifetime values for the B → X1,2 transitions demonstrate very irregular behaviour for various, TeX radicals, due to strong admixture of A4Σ? character to the X1,2 states near the B2Σ? potential minimum. The A1,2 4Σ? 1/2,3/2 and B2Σ? 1/2 states of TeX (X = Cl, Br, I) still await their experimental observation.  相似文献   

14.
Singlet-triplet anticrossings in the H2 molecule have been observed between two ungerade states, B′(3p)1Σu+ and f(4p)3Σu+. This is the first time that an observed H2 anticrossing has involved a state which can radiate directly to the ground state. Analysis yields accurate values for the zero field separations between two pairs of rotational and vibrational levels. It also yields a value for the Fermi contact interaction in the triplet state as well as the difference in the orbital angular momentum g factors for the two states. From linewidth measurements, we deduce a rigorous lower limit to the radiative lifetime of the B1Σu+ state and a (nearly equal) most reasonable value for it. It is shown that the perturbation between the two states is quite weak leading to little singlet-triplet mixing in zero field. The experimental data establish that the oscillator strength for the forbidden transition from the ground state to the f(4p)3Σu+ state is at least seven orders of magnitude smaller than that of the allowed transition to the B1Σu+ state.  相似文献   

15.
The threshold energy electron impact excitation spectra of CO2 and CS2 have been studied using the sulfur hexafluoride scavenger technique. The main results are triplet state excitation and autoionisation of negative ions associated with resonant excited states of the molecules. This confirms previous data concerning diatomic molecules. Furthermore, transitions such as 1Πg?X1Σg+ and 1Πu?X 1Σg+ are only weakly induced by low energy electrons, while the corresponding triplet excitations are probably more easily produced. Structures at 5.6, 6.1 and 6.6 eV observed in CS2 are due to negative ions and/or to 3Πu, 3Πg excitation.The autoionisation of CO2?(X2Πu) proceeds also by ejection of a thermal energy electron and leads to highly excited vibrational levels (3–5 eV) of the ground electronic state of CO2.  相似文献   

16.
The ESR parameters of the cations Be+ 2, Mg+ 2, Ca+ 2, BeMg+, BeCa+, MgCa+ and the mixed radicals ZBe, ZMg, ZCa (Z = Li, Na, K), all having a X 2Σ+ u(1σ2 gu)/X 2Σ+(1σ22σ) ground state, have been studied theoretically. The A iso and A dip constants have been calculated with UHF, CISD, MP2, B3LYP, PW91PW91 wavefunctions, and 6–311+G(2df) basis sets. The electron spin g factors (magnetic moment μs) have been evaluated from correlated (MRDCI) wavefunctions, using a Hamiltonian based on Breit-Pauli theory with perturbation expansions up to second order, and 6–311 + G(2d) basis sets. As expected for s-rich radicals, the hyperfine spectra are governed by the A iso terms. Both Δg∥ and Δg⊥ values are negative, but Δg∥ lies close to zero. For Δg⊥, the coupling with 1 2Π(u) dominates the sum-over-states expansions. Although the singly occupied MOs (SOMO) are mostly of s character, the |Δg⊥| are relatively large, up to 5200 ppm for cationic, and up to 7850 ppm for neutral radicals. These large values are caused by low excitation energies and high magnetic transition moments, the latter due to the fact that the σ?(s-s) SOMO has the same nodal properties as a pσ orbital. Of the radicals considered here, an ESR spectrum is available only for Mg+ 2. Our theoretical A iso of ?287 MHz reproduces well the matrix result (-291 MHz). Calculated values of ?10 ppm for Δg∥ and of ?1280 ppm for Δg⊥ give an average 〈Δg〉 = ?860 ppm that lies within the experimental range of ?600(±300) ppm in Ne, and of ?1300(±500) ppm in Ar matrices.  相似文献   

17.
The molecular constants are calculated for the X 1Σ g + , A 1Σ u + , B 1Πu, and a 3Σ u + and electronic states of a potassium dimer. The wave functions and vibrational energies necessary for calculating the molecular constants are determined by solving the radial wave equation with the use of potential energy curves constructed by the semiempirical method. The vibrational terms, the rotational constants, and the centrifugal distortion constants calculated from the potential curves are compared with those determined from the experimental data.  相似文献   

18.
This work computed the potential energy curves of 19 Λ-S states, which arose from the first five dissociation limits of BC+ cation, B+(1Sg) + C(3Pg), B+(1Sg) + C(1Dg), B+(1Sg) + C(1Sg), C+(2Pu) + B(2Pu), and B+(1Sg) + C(5Su). The calculations were done for internuclear separations from 0.08 to 1.07 nm. The potential energy curves of 36 Ω states yielded from these Λ-S states were also calculated. Core-valence correlation and scalar relativistic correction, basis set extrapolation as well as Davidson correction were accounted for. Of these Λ-S states, the c1Σ+, D3Π, 21Π, 23Σ+, 21Δ, 31Σ+, and 41Σ+ had double wells; the 33Π and 31Π states had three wells; the C3Σ? and D3Π states were inverted with the spin-orbit coupling effect included; and the second wells of c1Σ+, D3Π and 31Σ+ states, the second and the third wells of 33Π state as well as the third well of 31Π state were very weakly bound, which well depths were smaller than 400 cm?1. The spectroscopic parameters were determined for all the states. The vibrational properties were predicted only for some weakly bound states. The spin-orbit coupling effect on the spectroscopic parameters was evaluated.  相似文献   

19.
S. Burrill 《Molecular physics》2013,111(13-14):1891-1901
Potential curves and spectroscopic constants for a large number of doublet and quartet states of CBr were obtained by multireference configuration interaction calculations, using valence triple-zeta basis sets with polarization and diffuse functions. Besides the X2Π ground state, 14Σ?, 12Δ and 22Σ+ have been found to be stable. Spectroscopic constants calculated for 12Δ are in excellent agreement with experimental values obtained by Dixon and Kroto in 1963. Their observed predissociation of one component of 12Δ can be explained by the crossing of the 12Δ potential near equilibrium by 12Σ+. The 12Σ+ state is calculated to have a shallow long-range minimum at 2.31?Å. The dissociation energy of X2Π is calculated to be 3.43?eV. An observed T e of 4.97?eV for 22Σ+ agrees with the theoretical value. Several Rydberg states of the 2π→Ryd and 3σ→Ryd series, starting at T e ?=?5.25?eV, were identified. Photodissociation of CBr by sunlight, important in the ozone cycle, can occur via direct dissociation of the ground state, or by excitation to 12Δ followed by predissociation. Most dissocative repulsive states lie at higher energies, and are not expected to participate in the photodisscociation of CBr.  相似文献   

20.
Emission spectra of RuN have been recorded at high resolution in the region 12 000-35 000 cm−1 using a Fourier transform spectrometer. The molecules were excited in a ruthenium hollow cathode lamp in the presence of about 2.5 Torr of Ne and 5 m Torr of N2. New bands with origins near 17 758.1, 18 866.4, 19 800.4 and 20 721.5 cm−1 have been assigned as the 0-1, 0-0, 1-0, and 2-0 bands of a new 2Σ+-2Σ+ system with the lower state as the ground state. This transition has been labeled as F2Σ+-X2Σ+, with the F2Σ+ state arising from the 1σ22441 configuration. A rotational analysis of these bands has been carried out and spectroscopic constants have been extracted. The principal equilibrium constants for the ground state of RuN are ΔG(1/2)″=1108.3235(22) cm−1, Be″=0.5545023(42) cm−1, αe″=0.0034468(57) cm−1, re″=1.5714269(60) Å, while the equilibrium constants for the excited state are ωe′=946.8471(40) cm−1, ωexe′=6.4229(14) cm−1, Be′=0.50085(21) cm−1, αe′=0.00375(10) cm−1, re′=1.65345(34) Å. This transition is analogous to the E2Σ+-X2Σ+ system of RhC (W. J. Balfour et al., J. Mol. Spectrosc.198, 393 (1999)).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号