首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two liquid state theories, the self-consistent Ornstein–Zernike equation (SCOZA) and the hierarchical reference theory (HRT) are shown, by comparison with Monte Carlo simulations, to perform extremely well in predicting the liquid–vapour coexistence of the hard-core Yukawa (HCY) fluid when the interaction is long range. The long range of the potential is treated in the simulations using both an Ewald sum and hyperspherical boundary conditions. In addition, we present an analytical optimized mean field theory which is exact in the limit of an infinitely long-range interaction. The work extends a previous one by C. Caccamo, G. Pellicane, D. Costa, D. Pini, and G. Stell, Phys. Rev. E 60, 5533 (1999) for short-range interactions.  相似文献   

2.
We have obtained by Monte Carlo NVT simulations the constant-volume excess heat capacity of square-well fluids for several temperatures, densities and potential widths. Heat capacity is a thermodynamic property much more sensitive to the accuracy of a theory than other thermodynamic quantities, such as the compressibility factor. This is illustrated by comparing the reported simulation data for the heat capacity with the theoretical predictions given by the Barker-Henderson perturbation theory as well as with those given by a non-perturbative theoretical model based on Baxter's solution of the Percus-Yevick integral equation for sticky hard spheres. Both theories give accurate predictions for the equation of state. By contrast, it is found that the Barker-Henderson theory strongly underestimates the excess heat capacity for low to moderate temperatures, whereas a much better agreement between theory and simulation is achieved with the non-perturbative theoretical model, particularly for small well widths, although the accuracy of the latter worsens for high densities and low temperatures, as the well width increases.  相似文献   

3.
The thermodynamic properties of the triangular-well fluid with a well range of up to twice the hard sphere diameter were studied by means of a new developed equation of state and molecular simulation. This EoS is based on the perturbation theory of Barker and Henderson with the first and second-order perturbation terms evaluated by molecular simulation and then a fit with a simple function based on the radial distribution function of the reference fluid. The thermodynamic properties for the triangular-well fluid were also obtained directly by Gibbs ensemble and NPT Monte Carlo simulations. Good agreement is observed between the proposed EoS and the molecular simulation results. A model for the triangular-well solid is also presented; this has been used to calculate the solid–liquid transition line. Very good agreement is obtained with previously report values for this line and for the triple point temperature and pressure.  相似文献   

4.
L.L. Lee  D. Levesque 《Molecular physics》2013,111(6):1351-1370
The perturbation approach developed by Weeks, Chandler, and Andersen (WCA) and by Verlet and Weis (VW) for pure systems is here generalized to the case of mixtures. We study binary mixtures of molecules interacting with the 12–6 Lennard-Jones potential, for which Monte Carlo simulations are available for comparison. The work is divided into two parts: The first part presents results of Monte Carlo calculations on mixtures of hard spheres of 864 and 1000 particles. The radial distribution functions generated are used to test the VW representation for the correlation functions of hard-sphere mixtures. This representation is found to work satisfactorily within the expected error limits. The second part deals with the two-step perturbation procedure for calculating the thermodynamic quantities of the Lennard-Jones system. The Lennard-Jones potential is divided into a reference potential, which is strictly repulsive, and an attractive part. The system of the reference potential is represented by a system of hard-sphere mixture with equivalent diameters determined by the WCA rule. Analytical expressions are given for evaluating these equivalent diameters. The Lennard-Jones system is then recovered to the first order by a λ expansion over the reference system. Comparison with Monte Carlo results for a mixture of Lennard-Jones molecules, obeying the Berthelot rule, shows that the total thermodynamic properties are reproduced by the perturbation theory to 1 per cent, while the agreement in excess properties is only moderately successful, similar to some other analytical theories compared here. To reproduce these excess properties, which are extremely small, a precision of 0·1 per cent in the theory is required. The present theory is estimated to be accurate to 1 per cent in view of the successive approximations made.  相似文献   

5.
J. Largo 《Molecular physics》2016,114(16-17):2391-2399
ABSTRACT

The thermodynamic properties of a fluid with an interaction potential consisting in a hard-sphere core plus a Lennard-Jones tail have been obtained by Monte Carlo (MC) NVT simulation as a function of the density along several isotherms. In addition, the liquid–vapour coexistence has been determined by means of histogram-reweighting MC. These data have been used to analyse the performance of perturbation theory. To this end, the first three perturbation terms of the inverse temperature expansion of the Helmholtz free energy have been obtained by means of MC NVT simulations to test the convergence of the perturbation series and to compare with the predictions of the coupling parameter series expansion. Then, the predictions of the latter theory for the thermodynamic properties have been compared with the simulations, revealing the overall excellent performance of this perturbation theory for this model fluid, except in the vicinity of the critical point.  相似文献   

6.
An analytical equation of state is presented for the square-well dimer fluid of variable well width (1 ≤ λ ≥ 2) based on Barker-Henderson perturbation theory using the recently developed analytical expression for radial distribution function of hard dimers. The integral in the first- and the second-order perturbation terms utilizes the Tang, Y and Lu, B. C.-Y., 1994, J. chem. Phys., 100, 6665 formula for the Hilbert transform. To test the equation of state, NVT and Gibbs ensemble Monte Carlo simulations for square-well dimer fluids are performed for three different well widths (λ = 1.3, 1.5 and 1.8). The prediction of the perturbation theory is also compared with that of thermodynamic perturbation theory in which the equation of state for the square-well dimer is written in terms of that of square-well monomers and the contact value of the radial distribution function.  相似文献   

7.
A new optimized effective pair potential model is proposed, which is appropriate for the prediction of thermodynamic properties of fluid ammonia including vapour—liquid coexistence data. The phase behaviour is determined using a recently developed version of the Gibbs ensemble Monte Carlo method. Furthermore, liquid structure characteristics, the dielectric constant and supercritical properties are determined by Monte Carlo simulations in the isothermal—isobaric ensemble. The second virial coefficient of the pair potential model is calculated over a broad range of temperature. All properties are compared with experimental data or results of a multi-parameter equation of state for ammonia. The new model is found to yield coexistence properties and second virial coefficients in good agreement with experimental data and the results of the equation of state, respectively.  相似文献   

8.
Jiu-Xun Sun 《Molecular physics》2013,111(23-24):3139-3144
Analytical expressions for equation of state and thermodynamic properties have been derived for the multi-Yukawa fluids, based on the Ross variational perturbation theory and the analytical Percus–Yevick (PY) expression for the radial distribution function of hard spheres. It is shown that the variational procedure is absolutely convergent and the calculations are convenient and fast. By using the parameters fitted to the Lennard–Jones 12–6 potential from the literature, numerical calculations have been made within wide temperature and density ranges. Comparison with computer simulations shows that the precision of the analytical Ross theory based on the Yukawa-type potential is equivalent to the non-analytical Ross theory based on the Lennard–Jones 12–6 potential. It is concluded that the analytical theory based on the Yukawa-type potential can be applied to research practical fluids within wide temperature and density ranges.  相似文献   

9.
向远涛  Andrej Jamnik  杨开巍 《中国物理 B》2010,19(11):110508-110508
This paper investigates the structural properties of a model fluid dictated by an effective inter-particle oscillatory potential by grand canonical ensemble Monte Carlo (GCEMC) simulation and classical liquid state theories.The chosen oscillatory potential incorporates basic interaction terms used in modeling of various complex fluids which is composed of mesoscopic particles dispersed in a solvent bath,the studied structural properties include radial distribution function in bulk and inhomogeneous density distribution profile due to influence of several external fields.The GCEMC results are employed to test the validity of two recently proposed theoretical approaches in the field of atomic fluids.One is an Ornstein-Zernike integral equation theory approach;the other is a third order + second order perturbation density functional theory.Satisfactory agreement between the GCEMC simulation and the pure theories fully indicates the ready adaptability of the atomic fluid theories to effective model potentials in complex fluids,and classifies the proposed theoretical approaches as convenient tools for the investigation of complex fluids under the single component macro-fluid approximation.  相似文献   

10.
Integral equation theories and Monte–Carlo simulations were used to determine the thermodynamic and structural properties of a two-dimensional asymmetric Coulomb system. We check correctness of different closures in integral equations and their ability to reproduce Kosterlitz–Thouless and vapour–liquid phase transitions of the electrolyte and critical points. Integral equation theory results were compared with Monte–Carlo data. Among selected closures, hypernetted-chain approximation results matched computer simulation data best, but these equations unfortunately break down at temperatures well above the Kosterlitz–Thouless transition. The Kovalenko-Hirata closure produces results even at very low temperatures and densities, but no sign of phase transition was detected.  相似文献   

11.
Gibbs ensemble Monte Carlo simulations are performed to obtain the vapour–liquid equilibrium of oblate-like fluids interacting through the Kihara intermolecular potential. Results confirm the validity of a perturbation theory for Kihara fluids, whose accuracy for prolate fluids was tested some years ago. As in the case of hard ellipsoids, the symmetry of the phase diagram of oblate and prolate models is analysed. An interesting relation of Boyle temperature and critical parameters with molecular volume is found for the considered models. As a particular application, this relation allows the prediction of some thermodynamic properties of a new promising biofuel 2,5dimethylfuran.  相似文献   

12.
Gibbs ensemble Monte Carlo simulations have been performed for systems of square-well spherocylinders of different length-to-breadth ratio. The results are used to test a recent perturbation theory proposed for this kind of system. In addition, the results are compared to similar simulations performed for a Kihara fluid of elongated molecules. An unexpected good agreement is found for the coexistence thermodynamic and structural properties of both model fluids, hence suggesting that the hard spherocylinder plus square-well interaction should be considered as a reference potential for a perturbative treatment of more complex fluid models.  相似文献   

13.
New, simple and analytic perturbation theory equations of state for generalized hard-core Mie HCMie(α, β) and Mie(α, β) fluids are proposed. They are based on the second-order Barker-Henderson perturbation theory in the macroscopic compressibility approximation and the new analytical expression of the radial distribution function of hard spheres, gHS(r), developed by Sun in terms of a polynomial expansion of base functions adapted to the square-well and Sutherland potentials [Can. J. Phys. 83 (2005) 55], the combination of which yields the HCMie(α, β) and Mie(α, β) functions. The compressibility factors, the residual internal energies and the radial distribution function at contact with the hard core are then obtained from this equation of state for the HCLJ(12, 6) potential, which is a particular case of the HCMie(α, β) potentials with α = 12 and β = 6. The results are in good agreement with the existing Monte Carlo (MC) simulation data, and compare favorably with those obtained from five other equations of state, three of which contain numerical coefficients fitted to the Monte Carlo results. For the Mie(α, 6) (α = 8, 10, 12), fluids, the present equation of state is a good representation of recent molecular dynamics (MD) simulations of the pressure and internal energy. It is more accurate than the statistical associating fluid theory of variable range (SAFT-VR Mie(n, 6)) theory for n = 8, and 10, while for n = 12 the SAFT-VR theory is best. For the Mie(14, 7) fluid, which is outside the range of application of the SAFT-VR theory, the results for the pressure are in good agreement with the analytical equation of state obtained from the MC simulation data.  相似文献   

14.
Monte Carlo simulations of hard prolate spherocylinders (HPSs) with embedded dipole or quadrupole moment are reported for two elongations (L?=?0.5 and 1) and several values of the packing fraction. The MC values of the residual internal and Helmholtz energy and compressibility factor were determined. Our work represents the first simulation study of dipolar HPSs focused on the determination of the thermodynamic properties. In the case of quadrupolar HPSs, our results enlarge the range of state conditions for which the simulation data are available. The obtained MC data were used for a test of the perturbation theory of polar non-spherical molecule fluids. In order to evaluate the perturbation contributions containing the two-particle integrals, the values of the shape integrals (evaluated recently for dipolar and quadrupolar hard prolate spherocylinders) were employed and we were allowed to avoid the use of the similarity between Kihara and Gaussian overlap models. Fair agreement between the simulation data and the theoretical predictions was reached.  相似文献   

15.
The product-reactant Ornstein-Zernike approach, represented by the polymer mean-spherical approximation (PMSA), is utilized to describe the structure and thermodynamic properties of the fluid of Yukawa hard sphere chain molecules. An analytical solution of the PMSA for the most general case of the multicomponent freely jointed hard sphere multi-Yukawa chain fluid is presented. As in the case of the regular MSA for the hard sphere Yukawa fluid, the problem is reduced to the solution of a set of nonlinear algebraic equations in the general case, and to a single equation in the case of the factorizable Yukawa potential coefficients. Closed form analytical expressions are presented for the contact values of the monomer-monomer radial distribution function, structure factors, internal energy, Helmholtz free energy, chemical potentials and pressure in terms of the quantities, which follows directly from the PMSA solution. By way of illustration, several different versions of the hard sphere Yukawa chain model are considered, represented by one-Yukawa chains of length m, where m = 2, 4, 8, 16. To validate the accuracy of the present theory, Monte Carlo simulations were carried out and the results are compared systematically with the theoretical results for the structure and thermodynamic properties of the system at hand. In general it is found that the theory performs very well, thus providing an analytical route to the equilibrium properties of a well defined model for chain fluids.  相似文献   

16.
The paper presents calculations of the properties of binary mixtures of hard spheres and directionally associating hard spheres, a simple model for mixtures of nonpolar molecules with water that was developed by Nezbeda and his coworkers. Extensive results from Monte Carlo simulations in the isobaric, isothermal ensemble are presented for the density, configurational energy and chemical potentials in the mixtures for fluid states over a range of temperatures, pressures and compositions. A species exchange technique is used to compute the chemical potential difference between components in the mixtures. The results obtained are compared with the predictions of first-order thermodynamic perturbation theory (TPT). It is found that this theory provides an accurate picture of the system over most of the conditions considered. Calculations are also made of vapour–liquid coexistence for the model using TPT and calculations of solid–fluid coexistence for the model using TPT and existing results for the free energy of the pure component solids. It is found that the vapour–liquid coexistence for the model is pre-empted by the solid–fluid coexistence, as had previously been found for the pure component directionally associating hard sphere system.  相似文献   

17.
H2+He流体混合物在高温高压下由于氢的离解化学反应形成由H2,H,He三种粒子构成的混合体系,此时粒子间的相互作用较为复杂,离解能也会由于粒子间的这种复杂相互作用而降低.本文利用自洽流体变分理论来研究部分离解区H2+He流体混合物的高温高压物态方程,模型考虑了各种粒子间的相互作用及由温致和压致效应引起的离解能降低的自洽变分修正,并通过自洽流体变分过程对非理想的离解平衡方程求解得到粒子数密度分布,进而对自由能求导获得体系的热力学状态参量.计算结果与已有的冲击波实验数据、蒙特卡罗模拟及其他理论计算进行了比较.  相似文献   

18.
We show how to use the multiple histogram method to combine canonical ensemble Monte Carlo simulations made at different temperatures and densities. The method can be applied to study systems of particles with arbitrary interaction potential and to compute the thermodynamic properties over a range of temperatures and densities. The calculation of the Helmholtz free energy relative to some thermodynamic reference state enables us to study phase coexistence properties. We test the method on the Lennard-Jones fluids for which many results are available.  相似文献   

19.
《Physics letters. A》2001,289(3):141-146
This work is devoted to an analysis of the thermodynamic and transport properties of high-density low-temperature gases and plasmas. The results of two independent theoretical methods are discussed and compared: path integral Monte Carlo data and results from a new chemical model which takes into account free charged particles, atoms, molecules and molecular ions. The two approaches show good agreement for the equation of state of hydrogen up to the multimegabar range. At low temperature, both show indications of a first-order phase transition. Furthermore, based on the chemical model the electrical conductivity of dense hydrogen and deuterium and the deuterium shock hugoniot are computed.  相似文献   

20.
Intermolecular pair potentials of methane and of methane + nitrogen have been calculated by quantum chemical ab initio methods. The repulsive and electrostatic parts were determined pointwise for various distances and orientations of the dimers (supermolecule approach) by self-consistent field (SCF) calculations including the counterpoise correction. Gaussian basis functions of triple-zeta quality plus one set of polarization functions on all atoms were used. The dispersion energy, which cannot be calculated at the SCF level, has been added by a semi-empirical estimate. These potentials and the pair potential for nitrogen (of similar quality, taken from the literature) were fitted to analytical functions and used for NVT Monte Carlo simulations of thermodynamic properties of the fluids and their mixture over a wide temperature/density area. Comparison with measurements and with Monte Carlo results from the literature (pressure, internal energy, radial distribution function) obtained with other pair potentials indicates the quality of the present calculations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号