首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
The composition-independent virial coefficients of a d-dimensional binary mixture of (additive) hard hyperspheres following from a recent proposal for the equation of state of the mixture (Santos, A., Yuste, S. B., and López de Haro, M., 1999, Molec. Phys., 96, 1) are examined. Good agreement between theoretical estimates and available exact or numerical results is found for d = 2, 3, 4 and 5, except for mixtures whose components are very disparate in size. A slight modification that remedies this deficiency is introduced and the resummation of the associated virial series is carried out, leading to a new proposal for the equation of state. The case of binary hard sphere mixtures (d = 3) is analysed in some detail.  相似文献   

2.
The SC3H radical is known by experiment to have a linear equilibrium structure, but even rather high-level ab initio computations give a bent equilibrium geometry. A theoretical study of the SCCCH radical has been carried out in order to analyse the influence of several factors in the computed equilibrium structure. Quadratic configuration interaction QCISD(T) and restricted coupled cluster RCCSD(T) computations have been performed in combination with large basis sets. Spin-orbit effects have been taken into account through the Breit-Pauli Hamiltonian using multi-configuration SCF and configuration interaction wavefunctions. Our final results indicate that the equilibrium structure must be linear, in agreement with the experimental studies [McCarthy, M. C., Vrtilek, J. M., Gottlieb, C. A., Wang, W., and Thaddeus, P., 1994, Astrophys. J., 431, L127; Hirahara, Y., Ohshima, Y, and Endo, Y, 1994, J. chem. Phys., 101, 7342]. Both spin-orbit and electron correlation effects appear to be of comparable importance, but an adequate computation of the correlation energy has been much more difficult and has ultimately required basis set extrapolations.  相似文献   

3.
The vibrational state perturbing the J = 17 and 18 rotational states of the zero-order v 1 + 3v 3 state of 12C2H2 is assigned to the state with vibrational energy predicted at G ν = 12 685.1 cm?1 using the cluster model (El Idrissi, M. I., Liévin, J., Campargue, A. and Herman, M., 1999, J. chem. Phys., 110, 2074). The assignment is discussed also in terms of the very special pressure shift behaviour demonstrated previously for absorption lines reaching these levels (Herregodts, F., Hepp, M., Hurtmans, D., Vander Auwera, J. and Herman, M., 1999, J. chem. Phys., 111, 7961). The experimental information arising from a set-up newly running at ULB, called FT-ICLAS brings decisive information in the assignment process. This set-up is described briefly.  相似文献   

4.
In order to explain the adsorption isotherms of the amphiphilic penicillins nafcillin and cloxacillin onto human serum albumin (HSA), a cooperative multilayer adsorption model is introduced, combining the Brunauer–Emmet–Teller (BET) adsorption isotherm with an amphiphilic ionic adsorbate, whose chemical potential is derived from Guggenheim's theory. The non-cooperative model has been previously proved to qualitatively predict the measured adsorption maxima of these drugs [Varela, L. M., García, M., Pérez-Rodríguez, M., Taboada, P., Ruso, J. M., and Mosquera, V., 2001, J. chem. Phys., 114, 7682]. The surface interactions among adsorbed drug molecules are modelled in a mean-field fashion, so the chemical potential of the adsorbate is assumed to include a term proportional to the surface coverage, the constant of proportionality being the lateral interaction energy between bound molecules. The interaction energies obtained from the empirical binding isotherms are of the order of tenths of the thermal energy, therefore suggesting the principal role of van der Waals forces in the binding process.  相似文献   

5.
D. VIDUNA  W. R. SMITH 《Molecular physics》2013,111(17):2903-2905
New and very accurate formulae for additive binary hard sphere (HS) mixture radial distribution functions (RDFs) at contact are proposed in a simple analytical form. Using the virial theorem, the formulae also provide a new HS mixture equation of state (EOS). The new RDF formulae are the most accurate currently available. The new EOS is of comparable accuracy with that of Malijevsky, A., and Veverka, J. (1999, Phys. Chem. chem. Phys., 1, 4267), which is the most accurate HS mixture EOS currently available. However, the new EOS proposed here is of much simpler analytical form.  相似文献   

6.
The aim of the work presented in this paper is to help in the understanding of the lower critical solution temperature (LCST) fluid phase behaviour exhibited by polymer solutions. It is well recognized that the LCST in polymer solutions is a consequence of density (compressibility) effects; the solvent is much more compressible than the polymer and the increasing difference in compressibility when the temperature is increased leads to a negative volume of mixing. The separate roles that the repulsive and attractive intermolecular interactions play in this regard are less well understood. In this study we use the Wertheim first-order thermodynamic perturbation theory (TPT1) [Wertheim, M. S., 1987, J. chem. Phys., 87, 7323; Chapman, W. G., Jackson, G., and Gubbins, K. E., 1988, Molec. Phys., 65, 1057] to describe the phase equilibria of model polymer solutions of hard spheres and hard-sphere chains where the diameter of the solvent and the polymeric segments are the same (symmetrical system). The thermodynamic functions (volume, enthalpy, entropy and Gibbs function) of mixing are determined to assess the possibility of a demixing instability in such a system. No fluid-fluid phase separation is found for the purely repulsive (athermal) system, regardless of the chain length of the polymer. The role of the attractive interactions is then investigated by incorporating attractive interactions at the mean-field level; the simplest system with equivalent (symmetric) solvent-solvent, solvent-polymer segment, and polymer segment-polymer segment interaction energies is examined. The attractive interactions are found to be essential in describing the liquid-liquid phase separation; LCST behaviour is found for mixtures with ‘polymer’ chains of seven segments or more. In this case we show that the phase behaviour is driven by an unfavourable (negative) entropy of mixing due to an increase in the density of the solvent on addition of small amounts of polymer. We also determine the thermodynamic properties of mixing for a system of spherical molecules of the same size with directional interactions that give rise to LCST and closed-loop behaviour. As expected the mechanism for phase separation in such systems is very different to that in polymer solutions.  相似文献   

7.
A simple model for charged hard dumbbell is proposed in the binding mean-spherical approximation (BIMSA). The thermodynamic properties are analytical solutions of the unique screening parameter ΓB with full association. Critical point and vapour-liquid coexistence curve are identical to those of Kalyuzhnyi, Yu. V., 1998, Molec. Phys., 94, 735, where a site-site integral equation has to be solved. Substituting Γ without association for ΓB, the BIMSA reduces to the simple interpolation scheme (SIS). A simple interpolation between the SIS and the BIMSA is proposed: this gives the critical point (Tc? = 0.0525, p?c = 0.0640) which, for the time being, is the closest to the computer simulation results. Similarity between the charged hard dumbbell and the restricted primitive model of electrolyte is also addressed.  相似文献   

8.
Singlet–triplet transition moments and phosphorescence lifetimes have been calculated for the three-atomic molecules HCN, O3, H2O, H2S, GeF2, GeCl2 and GeBr2 by time-dependent density functional theory (DFT) utilizing quadratic response functions in order to qualify DFT which recently has become available for studies of this kind [TUNELL, I., Rinkevivius, Z., VAHTRAS, O., SALEK, P., HELGAKER, T., and ÅGREN, H., 2003, J. chem. phys., 119, 11024]. Comparison with ab initio and experimental data indicates that DFT exhibit results of similar quality as explicitly correlated methods which indicates that it indeed is a viable approach for singlet–triplet transitions. O3 provides an intriguing example in that a systematic investigation of the singlet–triplet transition moment of its Wulf band indicates a clear advantage of the DFT technique despite the multiconfigurational character of the electronic structure of this molecule. The electronic spin–spin coupling and the hyperfine nuclear coupling constants have also been calculated in order to further characterize the triplet state in the spectra of the investigated systems.  相似文献   

9.
Computer simulations are reported of hydrogen adsorption in multi-walled carbon nanotubes (MWNTs) and single-walled carbon nanotubes (SWNTs). The gas-solid interaction was modelled both as pure dispersion forces and also with a hypothetical model for chemisorption introduced in a previous paper (CRACKNELL, R., F., 2001, Phys. Chem. chem. Phys., 3, 2091). A two-centre model for hydrogen was employed and the grand canonical Monte Carlo methodology was used throughout. Uptake of hydrogen in the internal space of a carbon nanotube is predicted to be lower than in the optimal graphitic nanofibre with slitlike pores (provided the gas-solid potential is consistent). Part of the difference arises from the assumption of pore surface area used in converting the raw simulation data to gravimetric adsorption; however, the majority of the differences can be attributed to the curvature of the pore. This reduces the uptake of hydrogen (on a gravimetric basis) in spite of deepening the potential minimum inside the pore associated with dispersion forces. It is concluded that for the uptake of hydrogen in SWNTs of 5–10% reported by Heben (DILLON, A. C., JONES, K. M., BEKKEDAHL, T. A., KIANG, C. H., BETHUNE, D. S., AND HEBEN, M. J., 1997, Nature, 386, 377), gas-solid forces other than dispersion forces are required and most of the adsorption must occur in the interstices between SWNTs.  相似文献   

10.
An analytical equation of state is presented for the square-well dimer fluid of variable well width (1 ≤ λ ≥ 2) based on Barker-Henderson perturbation theory using the recently developed analytical expression for radial distribution function of hard dimers. The integral in the first- and the second-order perturbation terms utilizes the Tang, Y and Lu, B. C.-Y., 1994, J. chem. Phys., 100, 6665 formula for the Hilbert transform. To test the equation of state, NVT and Gibbs ensemble Monte Carlo simulations for square-well dimer fluids are performed for three different well widths (λ = 1.3, 1.5 and 1.8). The prediction of the perturbation theory is also compared with that of thermodynamic perturbation theory in which the equation of state for the square-well dimer is written in terms of that of square-well monomers and the contact value of the radial distribution function.  相似文献   

11.
An atomic model of growth with pairwise interactions is presented. By assuming coherent deposition the system is mapped onto a lattice-gas model. This leads to additional cluster interactions due to the lattice size mismatch between the substrate and the adsorbates. A numerical simulation with cluster interactions up to 5-body is performed. A narrow-size distribution of the nanostructures is obtained, as frequently observed experimentally. The computations show the possibility of explaining these distributions within the framework of the theory of Priester, C. and Lannoo, M., 1995, Phys. Rev. Lett., 75, 93.  相似文献   

12.
Two-dimensional (2D) spin-echo NMR experiments have been carried out on polycrystalline [2,3-13C2]-alanine under magic-angle sample spinning (MAS) conditions, so that two unusual resonance lines emerged along the F1 axis (Kuwahara, D., Nakai, T., Ashida, J., and Miyajima, S., 1999, Chem. Phys. Lett., 305, 35). To examine the spectral structure observed in the F1 direction more closely the 2D NMR experiment was undertaken using a sufficiently small tl increment, yielding many more resonance lines on a spectrum sliced along the F1 axis. The line distribution had a very unique and interesting structure. To elucidate the line positions theoretically, the signal for the 2D spin-echo experiment performed with any t1 increment was calculated analytically for a homonuclear two-spin-1/2 system undergoing MAS. Virtually six resonance lines (exactly 12 resonance lines) occurred on a spectrum sliced along the F1 axis. In addition, it was demonstrated that the intensities of some resonance lines were largely dependent on the dipolar interaction.  相似文献   

13.
In the following research acetylation as an unexplored factor in the anomeric effect in carbohydrate chemistry has been examined. Crystallographic data for methyl glycosides and their acetates have been compared and discussed. Some of the methyl glycosides form hydrogen bonding with the participation of acetal oxygen atoms. This seems to have the most significant influence on the structural diagnostic parameters for anomeric effect.

Abbreviations: Me-α-Glc: methyl α-D-glucopyranoside; Me-β-Glc: methyl β-D-glucopyranoside; Me-α-Gal: methyl α-D-galactopyranoside; Me-β-Gal: methyl β-D-galactopyranoside; Me-α-Man: methyl α-D-mannopyranoside; Me-β-Man: methyl β-D-mannopyranoside; Ac-Me-α-Glc: methyl 2,3,4,6-tetra-O-acetyl-α-D-glucopyranoside; Ac-Me-β-Glc: methyl 2,3,4,6-tetra-O-acetyl-β-D-glucopyranoside; Ac-Me-α-Gal: methyl 2,3,4,6-tetra-O-acetyl-α-D-galactopyranoside; Ac-Me-β-Gal: methyl 2,3,4,6-tetra-O-acetyl-β-D-galactopyranoside; Ac-Me-α-Man: methyl 2,3,4,6-tetra-O-acetyl-α-D-mannopyranoside; Ac-Me-β-Man: methyl 2,3,4,6-tetra-O-acetyl-β-D-mannopyranoside; GIPAW (Gauge Including Projector Augmented Waves) calculations: a DFT based method used for calculating nuclear magnetic resonance parameters; CP/MAS NMR: cross-polarisation (CP) magic angle spinning (MAS) NMR spectroscopy; δss: chemical shift in 13C CP/MAS NMR spectrum; δt: theoretical chemical shift: as derived from GIPAW DFT; dis: distorted multiplet in 1H NMR spectrum.  相似文献   

14.
Corrections are made to the Joy-Parr hydrogen and the Saturno-Parr methane one-centre wave functions and the functions are accurately reminimized with respect to the energy. The electronic wave functions and total molecular energies are obtained for various internuclear distances and the equilibrium internuclear distance and the breathing force constant determined. Three methods for calculating the force constant are given and compared. The equilibrium bond length for hydrogen is found to be 1·38 a.u. (experimental, 1·40 a.u.) and the force constant 6·33 md/å (experimental, 5·75 md/å). For methane the equilibrium C-H distance is found to be 2·014 a.u. (experimental, 2·05 a.u. and the force constant 25·8 md/å (experimental, 23·5 md/å). The total computed molecular energies for the equilibrium configurations of hydrogen and methane are -1·1605 a.u. (experimental, -1·175 a.u.) and -39·8444 a.u. (experimental, -40·51 a.u.) respectively.  相似文献   

15.
The hydrogen molecule coupling constant has been calculated from the second-order perturbation theory summation expression of Ramsey, truncated after the first few terms. The most accurate available wave functions, those of the James-Coolidge type, give a value for the coupling constant of circa 163 hz compared with the experimental value of 278 hz. Values of the largest discrete term (the first term) calculated from various approximate wave functions vary widely. In particular, the calculation analogous to the usual molecular orbital calculation gives a value of 726 hz for the first term (compared with 199 hz calculated from James-Coolidge type wave functions).  相似文献   

16.
The absorption spectrum of dideuteroacetylene has been recorded by intracavity laser absorption spectroscopy (ICLAS) in the 10 200–12 500cm?1 spectral region. Among 25 absorption bands of 12C2D2 rotationally analysed in this spectral region, 17 are newly observed. They include one IIu+ g and thirteen Σ+ u+ g bands starting from the vibrational ground state and eleven hot bands from the V 4 = 1 and V 5 = 1 lower states. The rotational structure of two excited levels is affected by a strongly J-dependent interaction with a perturber which induces intensity transfer to extra lines. The coupling is identified as a I-resonance interaction with δu dark states and the vibrational assignment of the perturbers is discussed. Two Σ-Σ bands of the 12C13 CD2 species, present in natural abundance in the sample, could also be identified and rotationally analysed. Most of the corresponding excited vibrational levels of 12C2D2 were unambiguously assigned using the polyad model [Herman, M., el idrissi, M. I., Pisarchik, A., Campargue, A., Gaillot, A.-C., Biennier, L., di lonardo, G. and Fusina, L., 1998, J. chem. Phys., 108, 1377] which allows vibrational energies and B V rotational constants to be predicted. In particular the previously highlighted 1/244 anharmonic resonance is confirmed by energy and intensity features in several {(V 1, V 2, V 3, V 4 = 0, V 5 = 0),(V 1 ?1, V 2 + 1, V 3 V 4 = 2, V 5 = 0)} dyads. Significant deviations between predicted and experimental energy levels are observed for a few levels and discussed.  相似文献   

17.
Measurements have been made of the heat capacity Cp from ~ 13°k to ~ 273°k of five clathrates of argon and β-quinol. The argon content ranged from ~ 20 per cent to ~ 80 per cent of the maximum possible amount. Over much of the temperature range studied, Cp proved to be a linear function of the argon content, but from 13°k to 20°k, and from 50°k to 100°k the relation between Cp and argon content is obscure, and may, in fact, be non-linear. Estimates have been made of the contribution to Cp made by a mole of argon in the temperature region where Cp is a linear function of composition, and these experimental values have been compared with those calculated according to the theory of J. H. van der Waals, which is based on the cell model of Lennard-Jones and Devonshire. The agreement between theory and experiment is satisfactory.  相似文献   

18.
ABSTRACT

Although nearly all of the amino acids that constitute proteins are l-amino acids, d-amino acid residues in human proteins have been recently reported. d-amino acid residues cause a change in the three-dimensional structure of proteins, and d-aspartic acid (Asp) residues are considered to be one of the causes of age-related diseases. The stereoinversion of Asp residues in peptides and proteins is thought to proceed via a succinimide intermediate; however, it has been reported that stereoinversion can occur even under conditions where a succinimide intermediate cannot be formed. In order to elucidate the non-succinimide-mediated stereoinversion pathway, we investigated the stereoinversion of l-Asp to d-Asp catalysed by phosphate and estimated the activation barrier using B3LYP/6?31+G(d,p) density functional theory (DFT) calculations. For the DFT calculations, a model compound in which the Asp residue is capped with acetyl and methyl-amino groups on the N- and C-termini, respectively, was used. The calculated activation barrier was not excessively high for the stereoinversion to occur in vivo. Therefore, this stereoinversion mechanism may compete with the succinimide-mediated mechanism.  相似文献   

19.
《光谱学快报》2013,46(5-6):461-475
The 1H‐ and 13C‐NMR spectra of 1‐β‐d‐glucopyranosyl‐1,2,3‐triazole‐4,5‐dimethyl carboxylate, 1‐β‐d‐glucopyranosyl‐1,2,3‐triazole‐4,5‐dicarboxamide, ‐dialkylcarboxamide‐N‐nucleosides 4–18, and 6‐amino‐4H‐1‐(1‐β‐d‐glucopyranosyl)‐8‐hydroxy‐1,2,3‐triazolo[4,5‐e][1,3]‐diazepin‐4‐one 19 had been studied. Resonance signals and anomeric configurations were assigned by homo‐ and heteronuclear two dimensional methods (DQF‐COSY, HSQC, HMBC, HMQC, ROESY).  相似文献   

20.
The isotopomers of halogen derivatives of l-tryptophan (l-Trp) (4′-F-, 7′-F-, 5′-Cl- and 7′-Br-l-Trp), specifically labelled with deuterium in α-position of the side chain, were obtained by enzymatic coupling of the corresponding halogenated derivatives of indole with S-methyl-l-cysteine in 2H2O, catalysed by enzyme tryptophanase (EC 4.1.99.1). The positional deuterium enrichment of the resulting tryptophan derivatives was controlled using 1H NMR. In accordance with the mechanism of the lyase reaction, a 100% deuterium labelling was observed in the α-position; the chemical yields were between 23 and 51%. Furthermore, β-F-l-alanine, synthesized from β-F-pyruvic acid by the l-alanine dehydrogenase reaction, has been tested as a coupling agent to obtain the halogenated deuterium-labelled derivatives of l-Trp. The chemical yield (~30%) corresponded to that as observed with S-methyl-l-cysteine but the deuterium label was only 63%, probably due to the use of a not completely deuterated incubation medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号