首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We develop a scaling theory for a single polyampholyte chain adsorbed on a charged spherical particle in a theta-solvent. Adsorption of a polyampholyte molecule is due to its polarization in the electrostatic field of the particle. For large particles with sizes exceeding the thickness of the adsorbed layer, the conformations of the chain are similar to the one found for polyampholyte adsorption on charged planar surface. However, an adsorbed polyampholyte chain forms a self-similar flower-like structure near the particles with sizes smaller than its Gaussian size. These self-similar structures result from the balance of the polarization energy of loops and the excluded volume interactions between monomers. The structure of an adsorbed polyampholyte in the flower-like conformation is similar to that of a neutral star polymer. Received 3 March 2000 and Received in final form 5 July 2000  相似文献   

2.
We have studied the adsorption of neutral polyampholytes on model charged surfaces that have been characterized by contact angle and streaming current measurements. The loop size distributions of adsorbed polymer chains have been obtained using atomic-force microscopy (AFM) and compared to recent theoretical predictions. We find a qualitative agreement with theory; the higher the surface charge, the smaller the number of monomers in the adsorbed layer. We propose an original scenario for the adsorption of polyampholytes on surfaces covered with both neutral long-chain and charged short-chain thiols. Received 22 February 2002 and Received in final form 23 April 2002  相似文献   

3.
The conformation of a weakly dissociating (annealing) polyelectrolyte chain end-tethered to a similarly or oppositely charged planar surface is analyzed in the framework of scaling arguments. For a similarly charged interface an analytical model is also utilized. We demonstrate that at low salt concentration in bulk solution there is a strong coupling between the polyelectrolyte conformation and its degree of ionization. In the case of an oppositely charged (adsorbing) surface, adsorption promotes ionization of the annealing polyelectrolyte. As a result, the adsorbed layer thickness decreases as a function of surface charge density more rapidly for an annealing polyelectrolyte than for a quenched one. In the case of a similarly charged (repulsive) surface the chain ionization is suppressed, and the annealing polyelectrolyte chain is less extended than the quenched one. Moreover, an increase in surface charge density leads to non-monotonous extension of the tethered polyelectrolyte.Received: 16 September 2003, Published online: 5 February 2004PACS: 61.25.Hq Macromolecular and polymer solutions; polymer melts; swelling - 82.35.Gh Polymers on surfaces; adhesion - 82.35.Rs Polyelectrolytes  相似文献   

4.
We develop a scaling theory of polyelectrolyte adsorption at an oppositely charged surface. At low surface charge densities, the thickness of the adsorbed layer is determined by the balance between electrostatic attraction to the charged surface and chain entropy. At high surface charge densities, it is determined by the balance between electrostatic attraction and short-range monomer-monomer repulsion. These different stabilizing mechanisms result in the nonmonotonic dependence of the layer thickness on the surface charge density.  相似文献   

5.
We discuss the influence of polymer adsorption on the curvature energy of an interface. Following an article by Clement and Joanny (J. Phys. II 7, 973 (1997)), a mean-field theory is used to calculate the surface tension, rigidity constants and spontaneous curvature associated with both reversible and irreversible polymer adsorption. In the case of irreversible polymer adsorption it is assumed that the amount of adsorbed polymer remains constant upon curving the interface. Unfortunately, constraining the amount of polymer by adding a Lagrange multiplier affects the thermodynamic state of the (free) polymer far away from the interface. Clement and Joanny solve this problem by removing the polymers in the bulk. We allow for the presence of free polymers, but to achieve this we have to apply a local external field to keep the adsorbed amount fixed. The results of the two approaches are compared and a physical interpretation is given. Received 25 July 2001 and Received in final form 5 December 2001  相似文献   

6.
We propose a new way of regulating protein adsorption by using a p H-responsive polymer. According to the theoretical results obtained from the molecular theory and kinetic approaches, both thermodynamics and kinetics of protein adsorption are verified to be well controlled by the solution p H. The kinetics and the amount of adsorbed proteins at equilibrium are greatly increased when the solution environment changes from acid to neutral. The reason is that the increased p H promotes the dissociation of the weak polyelectrolyte, resulting in more charged monomers and more stretched chains.Thus the steric repulsion within the polymer layer is weakened, which effectively lowers the barrier felt by the protein during the process of adsorption. Interestingly, we also find that the kinetics of protein desorption is almost unchanged with the variation of p H. It is because although the barrier formed by the polymer layer changes along with the change of p H,the potential at contact with the surface varies equally. Our results may provide useful insights into controllable protein adsorption/desorption in practical applications.  相似文献   

7.
Polymer chains adsorbed onto oppositely charged colloidal particles can significantly modify the particle-particle interactions. For sufficient amounts of added polymers, the original electrostatic repulsion can even turn into an effective attraction and relatively large aggregates can form. The attractive interaction contribution between two particles arises from the correlated adsorption of polyions at the oppositely charged particle surfaces, resulting in a non-homogeneous surface charge distribution. Here, we investigate the aggregation kinetics of polyion-induced colloidal complexes through Monte Carlo simulation, in which the effect of charge anisotropy is taken into account by a DLVO-like inter-particle potential, as recentely proposed by Velegol and Thwar (Langmuir 17, 7687 (2001)). The results reveal that the aggregation process slows down due to the progressive increase of the potential barrier height upon clustering. Within this framework, the experimentally observed cluster phases in polyelectrolyte-liposome solutions can be interpreted as a kinetic arrested state.  相似文献   

8.
We present a scaling theory for the adsorption of a weakly charged polyelectrolyte chain in a poor solvent onto an oppositely charged surface. Depending on the fraction of charged monomers and on the solvent quality for uncharged monomers, the globule in the bulk of the solution has either a spherical conformation or a necklace structure. At sufficiently high surface charge density, a chain in the globular conformation adsorbs in a flat pancake conformation due to the Coulombic attraction to the oppositely charged surface. Different adsorption regimes are predicted depending on two screening lengths (the Debye screening length monitored by the salt concentration and the Gouy-Chapman length monitored by the surface charge density), on the degree of ionization of the polymer and on the solvent strength. At low bulk ionic strength, an increase in the surface charge density may induce a transition from an adsorbed necklace structure to a uniform pancake due to the enhanced screening of the intra-chain Coulombic repulsion by the counterions localized near the surface. Received 12 April 2001  相似文献   

9.
In this paper we discuss the possibility of a general paradigm for cell–biomaterial and cell–nanoparticle interactions. The basis of the paradigm is that the nature of the biomaterial or nanoparticle surface is not the important parameter, but rather the nature of the outermost layer of adsorbed proteins as well as long-lived misfolded proteins shed from the surfaces. If the adsorbed protein is irreversibly adsorbed onto the surface it may be sufficiently disrupted so that a variety of peptide units (here termed “cryptic epitopes”) not usually expressed in nature at the surface of the protein become exposed. Similarly, where there is a slow exchange time with the surface, surface-induced perturbations may lead to long-lived misfolded proteins being shed from the surface and continuing to express altered surface peptide sequences. In cases where the proteins have lost most of their tertiary structure, anomalous peptide sequences and geometries that are not displayed at the surface by the native protein may in fact be presented after surface adsorption of a protein. Such anomalous surface expressions could contain novel epitopes that trigger various signalling pathways or even diseases. Thus, future approaches to understanding cell–biomaterial and cell–nanoparticle interactions should focus on characterising the outer layer of the adsorbed proteins, or “epitope mapping” as well as examining the possibility of formation of essentially “new” proteins as a result of desorption of conformationally or geometrically altered proteins.  相似文献   

10.
盛洁  王开宇  马贝贝  朱涛  蒋中英 《物理学报》2018,67(15):158701-158701
利用荧光显微技术表征了多聚赖氨酸诱导的负电性磷脂巨囊泡的动力学响应行为.研究发现,多聚赖氨酸可吸附至二油酰磷脂酰胆碱和二油酰磷脂酸混合磷脂巨囊泡的表面,诱导其发生粘连、出"绳"及破裂现象.分析认为,在低盐环境中,膜形变由多聚赖氨酸吸附于二油酰磷脂酸富集区引起的膜两叶应力不对称,以及静电相互作用等因素产生.研究结果对基于聚合物-巨囊泡体系的药物输运控释、细胞形变、微控反应和基因治疗等方面的研究提供有价值的支持.  相似文献   

11.
Nonequilibrium processes play a key role in the adsorption kinetics of macromolecules. It is expected that the competition between transport of polymer towards an interface and its subsequent spreading has a significant influence on the adsorbed amount. An increase of the transport rate can lead to an increase of the adsorbed amount, especially when the polymer has too little time to spread at the interface. In this study we present both molecular dynamics simulations and analytical calculations to describe some aspects of the adsorption kinetics. From MD simulations on a poly(ethylene oxide) chain in vacuum near a graphite surface, we conclude that the spreading process can, in first approximation, be described by either a simple exponential function or by first-order reaction kinetics. Combining these spreading models with the transport equations for two different geometries (stagnation-point flow and overflowing cylinder) we are able to derive analytical equations for the adsorption kinetics of polymers at solid-liquid and at liquid-fluid interfaces. Received: 18 July 1997 / Received in final form: 27 October 1997 / Accepted: 6 November 1997  相似文献   

12.
We investigate the problem of adsorption (localization) of polymer chains in the system of two penetrable interfaces within the mean-field approximation. The saturation of the polymer system in the limit case of zero bulk concentration is studied. We find the exact solution of this mean-field polymer adsorption problem that opens the possibility to treat various localization problems for polymer chains in such environments using appropriate boundary conditions. The exact solution is controlled by a single scaling variable that describes the coupling between the interfaces due to the polymer chains. We obtain a nonmonotonic behavior of the amount of adsorbed polymers as a function of the distance between the interfaces. This leads to a high-energy and a low-energy phase for the double layer with respect to the amount of polymers localized. At the saturation point, we find the total energy of the system and determine the force acting between the interfaces to be strictly attractive and to monotonically decay to zero when the interface distance increases.  相似文献   

13.
We present an experimental study of the adsorption of hydrophobic highly charged polyelectrolytes on a neutral and hydrophobic surface, the air/water interface. The polymer was a randomly sulphonated polystyrene with charge fractions between 0.3 and 0.9 and the adsorbed layers were characterised by Langmuir through measurements, ellipsometry and X-ray reflectivity. The adsorption rate is always very slow and the resulting layers are very thin (< 3 nm). A maximum of adsorption with the charge fraction is observed which we relate to the conformation of the chains in solution. We show that adsorption is partially irreversible, strongly hysteretic and that the state of an adsorbed layer depends on its history. Received 16 June 2000  相似文献   

14.
We present an analytical self-consistent-field (SCF) theory for a neutral polymer brush (a layer of long polymer chains end-grafted to a surface) with annealed excluded volume interactions between the monomer units. This model mimics the reversible adsorption of solute molecules or aggregates, such as small globular proteins or surfactant micelles, on the grafted chains. The equilibrium structural properties of the brush (the brush thickness, the monomer density profile, the distribution of the end segments of the grafted chains) as well as the overall adsorbed amount and the adsorbate density profile are analyzed as a function of the grafting density, the excluded volume parameters and the chemical potential (the concentration) of the adsorbate in the solution. We demonstrate that, when the grafting density is varied, the overall adsorbed amount always exhibits a maximum, whereas the root-mean-square brush thickness either increases monotonically or passes through a (local) minimum. At high grafting densities the chains are loaded by adsorbed aggregates preferentially in the distal region of the brush, whereas in the region proximal to the grafting surface depletion of aggregates occurs and the polymer brush retains an unperturbed structure. Depending on the relative strength of the excluded volume interactions between unloaded and loaded monomers both the degree of loading of the chains and the polymer density profile are either continuous or they exhibit a discontinuity as a function of the distance from the grafting surface. In the latter case intrinsic phase separation occurs in the brush: the dense phase consists of unloaded and weakly extended chains and occupies the region proximal to the surface, whereas a more dilute phase consisting of highly loaded and strongly extended chains forms the periphery of the brush. Received 26 November 1998 and Received in final form 2 April 1999  相似文献   

15.
The possibility of a label-free electrical detection of layer-by-layer adsorbed polyelectrolyte (PE) multilayers using a field-effect capacitive electrolyte-diamond-insulator-semiconductor (EDIS) structure is investigated. Positively charged synthetic polyelectrolyte PAH (Poly (allylamine hydrochloride)) and negatively charged PSS (Poly (sodium 4-styrene sulfonate)) have been used as a model system. Nanocrystalline diamond films were grown on p-Si-SiO2 substrates by a microwave plasma-enhanced chemical vapor deposition from a mixture of methane and hydrogen. The EDIS sensors functionalized with charged macromolecules have been characterized by means of capacitance-voltage and constant-capacitance methods. Alternating shifts in the capacitance-voltage and constant-capacitance curves have been observed after the adsorption of each polyanion and polycation layer, respectively. The effect of the number of the adsorbed PE layers and polarity of the outermost layer on the sensor response is discussed.  相似文献   

16.
梁燚然  梁清 《物理学报》2019,68(2):28701-028701
纳米颗粒在纳米医药、细胞成像等领域有着非常广泛的应用,深入理解纳米颗粒与生物膜之间相互作用的微观机制是纳米颗粒合成与应用的重要基础.本文采用粗粒化分子动力学模拟的方法研究了带电配体包裹的金纳米颗粒与相分离的带电生物膜之间的相互作用.结果表明,通过改变金纳米颗粒表面的配体密度、配体带电种类和比例,以及膜内带电脂分子的种类,可以方便地调控纳米颗粒在膜表面或膜内停留的位置和状态.进一步从自由能的角度分析了带电纳米颗粒与带电生物膜之间相互作用的微观物理机制.本文对纳米粒子在纳米医药、细胞成像等领域的应用具有一定的理论参考意义.  相似文献   

17.
The binding of polymerised actin--a prototype of semi-flexible macromolecule--to lipid monolayers is studied by neutron reflectivity to deduce the average thickness, the interfacial roughness and the polymer volume fraction of the adsorbed film. Electrostatic interaction between actin filaments (F-actin) and the lipid monolayer is mediated through a cationic lipid (1,2-dimyristoyl-3-trimethylammonium-propane, DMTAP). The adsorbed F-actin forms a monolayer with an average thickness of 69 to 84 ?, depending on the ionic strength of the buffer and surface charge density of the monolayer. The volume fraction of F-actin in the adsorbed layer can be as high as 0.29. The thickness and high volume fraction of the actin layer suggest that actin filaments lie flat on the surface and form nematic ordering. The binding-unbinding equilibrium of F-actin is controlled by the ionic strength and exhibits a strong hysteresis. In contrast to the results obtained for filamentous actin, monomeric actin (G-actin) shows no detectable binding to the positively charged lipid layers. Received 11 August 1999  相似文献   

18.
We present here a short review covering most of the experimental results on tethering charged chains by an end to a surface. A first class of experiments deals with solid surfaces where charged chains are either chemically grafted or adsorbed through a purposely chosen moiety. Structural studies have been carried out by scattering methods, spectroscopic techniques or microscopy. Forces between the polyelectrolyte layers covering the surfaces have also been obtained by using for instance, the surface force apparatus (SFA). A second class of experiments concerns polyelectrolytes, which are end-tethered to flexible surfaces like air–liquid or liquid–liquid interfaces. These experiments are fewer in number and mainly rely on the adsorption or spreading of charged diblock copolymers at the fluid interfaces.  相似文献   

19.
A newly developed theory regarding solute adsorption effect in viscometry of a polymer solution is reviewed and extended for determining the adsorbed layer thickness of polystyrene on a glass surface in viscosity measurements. This theory can adequately describe the concentration dependence of the viscosity of a polymer solution measured by glass capillary viscometer to the extremely dilute concentration region. Using this theory, both the free polymer chains in solution and the adsorbed polymer chain on the viscometer inner wall surface can be characterized. Examples are given for the characterization of six polystyrene samples with different molar masses by measuring their solution viscosity in benzene.  相似文献   

20.
We investigate the phenomenon of multilayer formation via layer-by-layer deposition of alternating charged polyelectrolytes. Using mean-field theory, we find that a strong short-range attraction between the two types of polymer chains is essential for the formation of multilayers. For strong enough short-range attraction, the adsorbed amount per layer increases (after an initial decrease), and finally it stabilizes in the form of a polyelectrolyte multilayer that can be repeated hundreds of times. For weak short-range attraction between any two adjacent layers, the adsorbed amount (per added layer) decays as the distance from the surface increases, until the chains stop adsorbing altogether. The dependence of the threshold value of the short-range attraction as function of the polymer charge fraction and salt concentration is calculated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号