首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In the present article, we have studied the effects of inclined magnetic field on the peristaltic flow of Jeffrey fluid through the gap between two coaxial inclined tubes. The inner tube is rigid, whereas the outer tube has sinusoidal wave traveling down its wall. The governing equations are simplified using long wave length and low Reynolds number approximations. Exact and numerical solutions have been derived for velocity profile. The expressions for pressure rise and friction force are calculated using numerical integration. Graphical results and trapping phenomenon is presented at the end of the article to see the physical behavior of different parameters. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
The present paper investigates a numerical study of flow instabilities in transient mixed convection in a vertical pipe. At the entrance of the pipe, the flow is suddenly submitted to a temperature step. The convection heat transfer on the outer surface of the pipe is taken into account. The governing equations are solved using a finite difference explicit scheme. The numerical results show that the time development of streamlines and isotherms is strongly dependent on the inlet temperature steps. For positive temperature steps, the unsteady vortex is significant in the vicinity of the wall and the reversal flow appears below the wave instability. In the case of negative temperature steps and especially for the low Reynolds number, the reversal flow appears on top of the wave instability. During the transient, the apparition of the vortical structures along the wall leads to the wall boundary layer instability. This phenomenon is due to the transient mixed convection flows. The temperature step effects on the heat transfer of the flow are presented in our paper.  相似文献   

3.
4.
The hydrodynamic stability of a low speed, plane, non-isothermal laminar wall jet at a constant temperature boundary condition was investigated theoretically and experimentally. The mean velocity and temperature profiles used in the stability analysis were obtained by implementing the Illingworth–Stewartson transformation that allows one to extend the classical Glauert solution to a thermally non-uniform flow. The stability calculations showed that the two unstable eigenmodes coexisting at moderate Reynolds numbers are significantly affected by the heat transfer. Heating is destabilizing the flow while cooling is stabilizing it. However, the large-scale instabilities associated with the inflection point of the velocity profile still amplify in spite of the high level of the stabilizing temperature difference. The calculated stability characteristics of the wall jet with heat transfer were compared with experimental data. The comparison showed excellent agreement for small amplitudes of the imposed perturbations. The agreement is less good for the phase velocities of the sub-harmonic wave and this is attributed to experimental difficulties and to nonlinear effects.  相似文献   

5.
Y. Onishi 《Shock Waves》1991,1(4):293-299
The flow fields associated with the interaction of a normal shock wave with a plane wall kept at a constant temperature were studied based on kinetic theory which can describe appropriately the shock structure and its reflection process. With the use of a difference scheme, the time developments of the distributions of the fluid dynamic quantities (velocity, temperature, pressure and number density of the gas) were obtained numerically from the BGK model of the Boltzmann equation subject to the condition of diffusive-reflection at the wall for several cases of incident Mach number:M 1=1.2, 1.5, 2.0, 3.0, 4.0, 5.0 and 6.0. The reflection process of the shocks is shown explicitly together with the resulting formation of the flow fields as time goes on. The nonzero uniform velocity toward the wall occurring between the viscous boundary layer and the reflected shock wave is found to be fairly large, the magnitude of which is of the order of several percent of the velocity induced behind the incident shock, decreasing as the incident Mach number increases. It is also seen that a region of positive velocity (away from the wall) within the viscous boundary layer manifests itself in the immediate vicinity of the wall, which is distinct for larger incident Mach numbers. Some of the calculated density profiles are compared with available experimental data and also with numerical results based on the Navier-Stokes equations. The agreement between the three results is fairly good except in the region close to the wall, where the difference in the conditions of these studies and the inappropriateness of the Navier-Stokes equations manifest themselves greatly in the gas behavior.This article was processed using Springer-Verlag TEX Shock Waves macro package 1990.  相似文献   

6.
非对称槽道中涡旋波的特性研究   总被引:3,自引:0,他引:3  
利用PIV流场显示技术,对振荡流体在非对称槽道中涡旋波的产生、发展和消失的规律进 行了实验研究和分析,测得了涡旋波流场的速度矢量图,阐明了涡旋波流场周期性变化的特 点. 结合涡动力学方程,深入分析并揭示了做周期性运动的流体能在槽道中产生波的特性这 一规律,从中发现:流体周期变化的非定常性和不对称的槽道结构是形成涡旋波流动的主要 因素. 本文对涡旋波流场中各个旋涡的速度分布和涡量进行了测量和计算,分析了涡旋波 强化传质的机理,并研究了Re数对涡旋波流动的影响  相似文献   

7.
A numerical procedure is developed for the analysis of flow in a channel whose walls describe a travelling wave motion. Following a perturbation method, the primitive variables are expanded in a series with the wall amplitude as the perturbation parameter. The boundary conditions are applied at the mean surface of the channel and the first-order perturbation quantities are calculated using the pseudospectral collocation method. Although limited by the linear analysis, the present approach is not restricted by the Reynolds number of the flow and the wave number and frequency of the wavy-walled channel. Using the computed wall shear stresses, the positions of flow separation and reattachment are determined. The variations in velocity and pressure with frequency of excitation are also presented. © 1998 John Wiley & Sons, Ltd.  相似文献   

8.
Unsteady natural convection flow in a two-dimensional square cavity filled with a porous material has been studied. The flow is initially steady where the left-hand vertical wall has temperature T h and the right-hand vertical wall is maintained at temperature T c (T h > T c) and the horizontal walls are insulated. At time t > 0, the left-hand vertical wall temperature is suddenly raised to which introduces unsteadiness in the flow field. The partial differential equations governing the unsteady natural convection flow have been solved numerically using a finite control volume method. The computation has been carried out until the final steady state is reached. It is found that the average Nusselt number attains a minimum during the transient period and that the time required to reach the final steady state is longer for low Rayleigh number and shorter for high Rayleigh number.  相似文献   

9.
A quantitative thermometry technique, based on planar laser-induced fluorescence (PLIF), was applied to image temperature fields immediately next to walls in shock tube flows. Two types of near-wall flows were considered: the side wall thermal boundary layer behind an incident shock wave, and the end wall thermal layer behind a reflected shock wave. These thin layers are imaged with high spatial resolution (15μm/pixel) in conjunction with fused silica walls and near-UV bandpass filters to accurately measure fluorescence signal levels with minimal interferences from scatter and reflection at the wall surface. Nitrogen, hydrogen or argon gas were premixed with 1–12% toluene, the LIF tracer, and tested under various shock flow conditions. The measured pressures and temperatures ranged between 0.01 and 0.8 bar and 293 and 600 K, respectively. Temperature field measurements were found to be in good agreement with theoretical values calculated using 2-D laminar boundary layer and 1-D heat diffusion equations, respectively. In addition, PLIF images were taken at various time delays behind incident and reflected shock waves to observe the development of the side wall and end wall layers, respectively. The demonstrated diagnostic strategy can be used to accurately measure temperature to about 60 μm from the wall.  相似文献   

10.
The effect of time-periodic temperature modulation at the onset of convection in a Boussinesq porous medium saturated by a nanofluid is studied analytically. The model used for the nanofluid incorporates the effects of Brownian motion. Three types of boundary temperature modulations are considered namely, symmetric, asymmetric, and only the lower wall temperature is modulated while the upper wall is held at constant temperature. The perturbation method is applied for computing the critical Rayleigh and wave numbers for small amplitude temperature modulation. The shift in the critical Rayleigh number is calculated as a function of frequency of modulation, concentration Rayleigh number, porosity, Lewis number, and thermal capacity ratio. It has been shown that it is possible to advance or delay the onset of convection by time-periodic modulation of the wall temperature. The nanofluid is found to have more stabilizing effect when compared to regular fluid. Low frequency is destabilizing, while high frequency is always stabilizing for symmetric modulation. Asymmetric modulation and only lower wall temperature modulation is stabilizing for all frequencies when concentration Rayleigh number is greater than one.  相似文献   

11.
In wall turbulence, a traveling wave-like control is known to decrease the skin-friction drag and induce the relaminarization phenomenon. Because it is noteworthy to investigate the control effect in other canonical flows, direct numerical simulations of fully developed turbulent Taylor–Couette flows are performed. The Reynolds number, based on the wall velocity of a rotating inner cylinder and the radius of a centerline between cylinders, is set to 84,000. The traveling wave-like blowing and suction is imposed on the inner or outer cylinder wall, and the control effect is parametrically investigated. In the inner cylinder control, the torque reduction is obtained when the wave travels in the co-rotating direction with the inner cylinder, and its wavespeed is faster than the rotation. In the outer cylinder control, in contrast, the torque reduction is obtained when the wave propagates in the opposite direction. While the control is imposed on one side wall (i.e., inner or outer cylinder), the control affects the entire flow region. The Taylor vortex remains, while the traveling wave affects its strength. The three-component decomposition analysis shows that the traveling wave creates the coherent contribution on the torque, while the random contribution on it is reduced. Accordingly, a major factor of the torque reduction in the Taylor–Couette flow is the reduction of the random contribution. In addition, for the faster wavespeed cases with the small wavenumber (i.e., the long wavelength), the drag reduction larger than 60% is obtained and the relaminarization occurs in these cases.  相似文献   

12.
B平面上斜压波热力结构特性的实验研究   总被引:1,自引:0,他引:1  
首次用转环实验模拟方法研究了β效应对斜压波热力结构的影响,发现β效应有抑制流动的水平混合和垂直混合的作用,使流动趋于正压;β平面上急流随高度降低而减弱,在急流的内外两侧各有一个无量纲温度值分布的突跃区,它们的空间结构与大气环流中的极锋锋区和北极锋锋区的结构相似。  相似文献   

13.
The response of a semi-infinite compressible fluid to a step-wise change in temperature of its boundary is investigated analytically and numerically. Numerical results of the boundary layer structure are compared with Clarke’s analytical solution for a gas with thermal conductivity proportional to temperature. To avoid unwanted numerical dissipation in the numerical analysis, the space-time conservation element and solution element (CESE) method has been adopted to solve the unsteady 1-D Navier-Stokes equations. Good agreement between analytical and numerical results has been found for the development of the thermal boundary layer on a long time scale. Weak shock waves and expansion waves induced by the thermal boundary layer due to its compressibility, are observed in the numerical simulation. Finally, the numerical method has been applied to the reflection of a non-linear expansion wave and to a shock wave from an isothermal wall, thereby illustrating the effect of the boundary layer on the external flow field.  相似文献   

14.
FLAT-PLATEBOUNDARY-LAYERFLOWSINDUCEDBYDUSTYSHOCKWAVE(王柏懿)(陶锋)FLAT-PLATEBOUNDARY-LAYERFLOWSINDUCEDBYDUSTYSHOCKWAVE¥WangBoyi;Ta...  相似文献   

15.
A method for rapidly damping instability waves is proposed as a means of actively controlling a perturbed gas boundary layer flow. The method is based on the use of an active body surface segment which reacts to an instantaneous local pressure variation by producing a proportional local wall displacement normal to the surface with a constant time lag calculated to result in the optimal suppression of unstable disturbances. It is shown that in the one-frequency case the wave number spectrum of the optimal control law contains multiple eigenvalues. The effectiveness of the method is demonstrated over a wide range of variation of the instability wave frequencies and directions. The propagation of an instability wave over an active segment of finite length is calculated using an integral-equation method based on solving the problem of boundary layer flow receptivity to surface vibration. Explicit formulas describing the process of scattering of the instability wave into stable modes at the junction point of the rigid and active surfaces are obtained using the Fourier method and the integral Cauchy theorem.  相似文献   

16.
Interaction of a shock wave with a system of motionless or relaxing particles is numerically simulated. Regimes of the gas flow around these particles are described, and the influence of the initial parameters of the examined phenomenon on the flow pattern is analyzed. The drag coefficient of particles is calculated as a function of the Mach number behind the shock wave at a fixed Reynolds number. The dynamics of heat exchange for particles of different sizes (10 μm–1 mm) is determined, and the laws of thermal relaxation after passing of a shock wave over the system of particles are found. The times of thermal and velocity relaxation of particles are estimated as functions of the Reynolds number, and the predicted relaxation time is compared with the corresponding empirical dependences.  相似文献   

17.
 The effect of the presence of a thin, perfectly conductive baffle on the development of laminar convection in a vertical channel has been investigated numerically. The channel has different constant wall temperatures which are higher than those at the entrance. Velocity and temperature profiles have been presented. The effect of the different parameters on heat transfer in the channel has been discussed. The occurrence of flow reversal has been observed in some cases but examination of this phenomenon has been considered to be beyond the scope of the present work. For long channels, the numerical solutions approach the fully developed flow analytical solution. Finally, the results showed that higher values of Nuh can be obtained when the baffle is near the hot wall. Received on 23 May 2000  相似文献   

18.
In order to understand the nature of surface patterns on silicon melts in industrial Czochralski furnaces, we conducted a series of unsteady three-dimensional numerical simulations of thermocapillary convections in thin silicon melt pools in an annular container. The pool is heated from the outer cylindrical wall and cooled at the inner wall. Bottom and top surfaces are adiabatic. The results show that the flow is steady and axisymmetric at small temperature difference in the radial direction. When the temperature difference exceeds a certain threshold value, hydrothermal waves appear and bifurcation occurs. In this case, the flow is unsteady and there are two possible groups of hydrothermal waves with different number of waves, which are characterized by spoke patterns traveling in the clockwise and counter-clockwise directions. Details of the flow and temperature disturbances are discussed and number of waves and traveling velocity of the hydrothermal wave are determined. The project supported by the National Natural Science Foundation of China (50476042) and the Scientific Research Foundation for the Returned Overseas Chinese Scholars, Ministry of Education of China. The English text was polished by Yunming Chen.  相似文献   

19.
 The effect of time-periodic temperature/gravity modulation at the onset of convection in a Boussinesq fluid-saturated anisotropic porous medium is investigated by making a linear stability analysis. Brinkman flow model with effective viscosity larger than the viscosity of the fluid is considered to give a more general theoretical result. The perturbation method is applied for computing the critical Rayleigh and wave numbers for small amplitude temperature/gravity modulation. The shift in the critical Rayleigh number is calculated as a function of frequency of the modulation, viscosity ratio, anisotropy parameter and porous parameter. We have shown that it is possible to advance or delay the onset of convection by time-periodic modulation of the wall temperature and to advance convection by gravity modulation. It is also shown that the small anisotropy parameter has a strong influence on the stability of the system. The effect of viscosity ratio, anisotropy parameter, the porous parameter and the Prandtl number is discussed. Received on 28 July 2000 / Published online: 29 November 2001  相似文献   

20.
Highly complicated shock wave dynamics has been numerically calculated by solving the Euler equations for a circular shock tube suddenly expanded three times of the original tube diameter atx=0. Shock waves of different shock Mach number,M s =1.5 and 2.0, have produced remarkably distinct blast jet structures. A planar shock wave took its final form after the blast by repeated Mach reflections of the blast wave: the first one at the wall and the second one at the central axis. The central Mach disc overtook and merged with the annular Mach stem before the planar shock wave was formed. In contrast to the blast wave which would propagate spherically in an open space, the present blast wave undergoes complex morphological transformation in the restricted flow passage, resulting in an unstable and oscillatory blast jet structure of highly rotational nature. The slipstream tube emanating from the shock tube exit corner decomposed into a chain of small vortex rings that interacted with the barrel shock of the jet, which caused periodic collapse of the jet structure. The finite volume-FCT formulation equipped with the time-dependenth-refinement adaptive unstructured triangular mesh technique in the present paper has contributed to resolution of the intricate physical discontinuities developing in the blast flow fields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号