首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We introduce a novel preconcentrating technique by using surface modification of palladium nanoparticles (Pd-NPs) with octadecane thiol (ODT) prepared in toluene for selective and sensitive extraction of proteins (insulin, ubiquitin, lysozyme) from a variety of real-world samples including pancreas, mushroom, soybean and milk using nanoparticle-liquid-liquid microextraction (NP-LLME) coupled to matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-MS). The limit of detection (LOD) values obtained for gramicidin D and insulin in water and urine are between 17-37 nM (17-37 fmol) (with RSDs ranging from 5.3-7.2%) which are 10-20-fold enhancement in detection sensitivity compared with conventional MALDI-MS. The optimal sample pH for highest extraction efficiency of insulin, ubiquitin and lysozyme from biological samples was observed at sample pH ~ pI which could be due to the enhancement of hydrophobic interactions between proteins with the hydrophobic ligands of Pd-ODT NPs. In addition, we also found that with the addition of 1?M NaCl, signals could be significantly enhanced by using the current approach. It is an efficient, straightforward, sensitive and selective nanoprobe which can be widely applied for separation, enrichment and preconcentration of peptides or proteins from complex biological samples in proteome research.  相似文献   

2.
Single drop microextraction (SDME) coupled with matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) has been applied for direct analysis of hydrophobic peptides (valinomycin and gramicidin D) from biological samples (urine and plasma) in high salt solution. The optimal conditions such as selection of extraction solvent, stirring rate, extraction time, effect of salt concentration and matrix-to-analyte ratio were investigated. The limits of detection (LODs) were found to be 73 nM to 170 nM for valinomycin and 96 nM to 5.5 μM for gramicidin D in high salt solution (1.7 M of NaCl) in MALDI-MS. The current approach can enhance the LODs by 11-320-fold for gramicidin D analysis in water, urine and plasma in high salt solution. Furthermore, the current approach has been successfully demonstrated for real-world sample analysis (β-carotene from carrots) by MALDI-MS. The current approach is a rapid, simple and efficient clean-up platform for direct analysis of hydrophobic molecules in biological samples from high salt solution.  相似文献   

3.
A magnetite/oxidized carbon nanotube composite, Fe(3)O(4)@SiO(2)/OCNT, was fabricated in a simple way, and it was successfully used as a magnetic solid-phase extraction sorbent and a significant matrix of the matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) for the detection of benzo[a]pyrene (BaP).  相似文献   

4.
Kailasa SK  Wu HF 《Talanta》2010,83(2):527-534
We report the first use of functionalized Ag2Se nanoparticles (NPs) as effective extracting probes for NPs-based liquid-phase microextraction (NPs-LPME) to analyze hydrophobic peptides and proteins from biological samples (urine and plasma) and soybean in matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). Surface modified functional groups such as octadecanethiol (ODT) and 11-mercaptoundecanoic acid (MUA) on Ag2Se NPs were found to play an important role for efficient extraction of peptides and proteins from test samples through hydrophobic interactions. The peptides can be efficiently extracted using functionalized Ag2Se NPs as extracting probes in the presence of high concentration of matrix interferences such as 4 M urea, 0.5% Triton X-100 and 3% NaCl. Ag2Se@ODT NPs have shown better extraction efficiency and detection sensitivity for peptides than Ag2Se@MUA NPs, bare Ag2Se NPs and conventional MALDI-MS. The LODs are 20-68 nM for valinomycin and 100-180 nM for gramicidin D using Ag2Se@ODT NPs-LPME in the MALDI-MS. The current approach is highly sensitive and the target analytes can be effectively isolated without sample loss and efficiently analyzed in MALDI-MS.  相似文献   

5.
For the first time, we utilized multifunctional nanoparticles composite (NPs composite) for matrix-assisted laser desorption/ionization mass spectrometric (MALDI-MS) analysis of peptides and proteins. Multiwalled carbon nanotubes doped with Cd(2+) ions and modified with cadmium sulfide NPs were synthesized by a chemical reduction method at room temperature. The multifunctional NPs composite applied for the analysis of peptides and microwave-digested proteins in the atmospheric pressure matrix-assisted laser desorption/ionization ion-trap and MALDI time-of-flight (TOF) mass spectrometry (MS) was successfully demonstrated. The maximum detection sensitivity for peptides in MALDI-MS was achieved by the adsorption of negatively charged peptides onto the surfaces of NP composite through electrostatic interactions. The optimal conditions of peptide mixtures were obtained at 20 min of incubation time using 1 mg of NPs composite when the pH of the sample solution was kept higher than the pI values of peptides. The potentiality of the NP composite in the preconcentration of peptides was compared with that of the individual NP by calculating the preconcentration factors (PF) and found that the NPs composite showed a 4-6 times of PF than the other NPs. In addition, the NPs composite was also applied as heat-absorbing materials for efficient microwave tryptic digestion of cytochrome c and lysozyme from milk protein in MALDI-TOF-MS analysis. We believe that the use of NPs composite technique would be an efficient and powerful preconcentrating tool for MALDI-MS for the study of proteome research.  相似文献   

6.
Catalytic performances and the reaction mechanism of Co(3)O(4)/AC (AC=activated carbon) for aerobic oxidation of alcohols carried out in the liquid phase were investigated. Co(3)O(4)/AC shows a high activity for aerobic oxidation of benzyl alcohol, comparable to noble metal catalysts (e.g., Au/AC) even in the absence of additives or promoters (e.g., NaOH). Changing preparation conditions, such as treatment temperature and/or time, can affect the catalytic performances of Co(3)O(4)/AC, due to decomposition of surface groups of the carbon support. Careful studies show that low alcohol conversions are obtained with either Co(3)O(4) or AC alone, which indicates that the high conversion observed over the Co(3)O(4)/AC is due to a synergistic effect between Co(3)O(4) and AC. Parallel experiments using a high-surface-area covalent triazine framework or oxygen-inert carbon nitride as support for the Co(3)O(4) catalyst also show lower conversions, which suggest that the ability of AC (in Co(3)O(4)/AC) to activate molecular oxygen is essential for the reaction. FTIR and XPS spectra taken from catalysts before and after the reaction confirm that oxygen activation proceeds mainly on the carbon support. As a result, it can be assumed that the alcohol dehydrogenation step proceeds on the metal oxide, whereas the oxygen activation step occurs mainly on the carbon support.  相似文献   

7.
A variety of protein isolation and purification techniques for ribonucleoprotein (RNP) complexes were investigated for their compatibility with downstream analysis by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Ribosomal proteins from Escherichia coli 70S ribosomes were obtained using methods such as phenol extraction and precipitation by organic solvents or acids. Under optimal conditions, more than 90% of the expected ribosomal proteins were detected in a single MALDI-MS experiment. The most effective approach combined ribosome denaturation by buffer exchange with acid precipitation of the ribosomal ribonucleic acids. An improved acid precipitation approach, involving the sequential additions of acetic and trifluoroacetic acid, yielded more complete protein coverage while minimizing loss of ion signal from lower molecular weight proteins. With phenol extraction, substantial gains in ion abundance of higher molecular weight proteins are noted, although some of the lower molecular weight proteins were not efficiently extracted. These results illustrate several effective approaches for protein isolation from protein complexes such as RNPs that are MALDI-MS compatible, and these approaches should extend the use of MALDI-MS for proteomics-based analyses of other protein-nucleic acid complexes.  相似文献   

8.
A series of alumina supported cobalt oxide based catalysts doped with noble metals such as ruthenium and platinum were prepared by wet impregnation method.The variables studied were difference ratio and calcination temperatures.Pt/Co(10∶90)/Al2O3 catalyst calcined at 700 ℃ was found to be the best catalyst which able to convert 70.10% of CO2 into methane with 47% of CH4 formation at maximum temperature studied of 400 ℃.X-ray diffraction analysis showed that this catalyst possessed the active site Co3O4 in face-centered cubic and PtO2 in the orthorhombic phase with Al2O3 existed in the cubic phase.According to the FESEM micrographs,both fresh and spent Pt/Co(10∶90)/Al2O3 catalysts displayed small particle size with undefined shape.Nitrogen Adsorption analysis showed that 5.50% reduction of the total surface area for the spent Pt/Co(10∶90)/Al2O3 catalyst.Meanwhile,Energy Dispersive X-ray analysis(EDX) indicated that Co and Pt were reduced by 0.74% and 0.14% respectively on the spent Pt/Co(10∶90)/Al2O3catalyst.Characterization using FT-IR and TGA-DTA analysis revealed the existence of residual nitrate and hydroxyl compounds on the Pt/Co(10∶90)/Al2O3 catalyst.  相似文献   

9.
Through direct nanoparticle nucleation and growth on nitrogen doped, reduced graphene oxide sheets and cation substitution of spinel Co(3)O(4) nanoparticles, a manganese-cobalt spinel MnCo(2)O(4)/graphene hybrid was developed as a highly efficient electrocatalyst for oxygen reduction reaction (ORR) in alkaline conditions. Electrochemical and X-ray near-edge structure (XANES) investigations revealed that the nucleation and growth method for forming inorganic-nanocarbon hybrids results in covalent coupling between spinel oxide nanoparticles and N-doped reduced graphene oxide (N-rmGO) sheets. Carbon K-edge and nitrogen K-edge XANES showed strongly perturbed C-O and C-N bonding in the N-rmGO sheet, suggesting the formation of C-O-metal and C-N-metal bonds between N-doped graphene oxide and spinel oxide nanoparticles. Co L-edge and Mn L-edge XANES suggested substitution of Co(3+) sites by Mn(3+), which increased the activity of the catalytic sites in the hybrid materials, further boosting the ORR activity compared with the pure cobalt oxide hybrid. The covalently bonded hybrid afforded much greater activity and durability than the physical mixture of nanoparticles and carbon materials including N-rmGO. At the same mass loading, the MnCo(2)O(4)/N-graphene hybrid can outperform Pt/C in ORR current density at medium overpotentials with stability superior to Pt/C in alkaline solutions.  相似文献   

10.
A new method of ionic liquids based cycle flow single drop microextraction combined with electrothermal vaporization inductively coupled plasma mass spectrometry (ETV-ICP-MS) was proposed for the determination of trace Co, Hg and Pb with 1-(2-pyridylazo)-2-naphthol (PAN) as both extractant and chemical modifier and 1-butyl-3-methylimidazolium hexafluorophosphate as the extraction solvent. Several factors that influence the microextraction efficiency, such as sample pH, sample flow rate, microdrop volume and extraction time, were investigated and the optimized microextraction conditions were established. Co, Hg and Pb in the post-extraction ionic liquids phase were directly determined by ETV-ICP-MS with the use of PAN as chemical modifier. The chemical modification of PAN in ETV-ICP-MS was studied and the factors affecting the vaporization behaviors of target analytes were investigated. Under the optimized conditions, the detection limits of the method were 1.5, 9.8 and 6.7 pg/mL for Co, Hg and Pb, with the relative standard deviations for 0.5 ng/mL (n = 7) of Co, Hg and Pb were 7.7%, 5.2% and 12.0%, respectively. After 10 min of extraction, the enrichment factors were 350 (Co), 50 (Hg) and 60 (Pb). The proposed method was successfully applied to the determination of trace Co, Hg and Pb in human serum and environmental water samples. In order to validate the developed method, a certified reference material of human hair (GBW07601) was analyzed and the determined values were in good agreement with the certified values.  相似文献   

11.
A new type of scrolled structure of Co(3)O(4)/reduced graphene oxide (r-GO) is facilely prepared through a two-step surfactant-assisted method. This assembly enables almost every single Co(3)O(4) scroll to connect with the r-GO platelets, thus leading to remarkable electrochemical performances in terms of high specific capacitance and good rate capability.  相似文献   

12.
In this paper, we report a new liquid–liquid microextraction procedure called “nanoparticles decorated with a Schiff's base for the microextraction of Cd, Pb, Ni, and Co in environmental samples”. The developed procedure was utilized for the extraction of Cd, Pb, Ni, and Co in environmental samples. The Schiff's base was formed by reacting salicylaldehyde with 3‐aminopropyltriethoxysilane‐functionalized iron oxide nanoparticles. Analyte extraction was conducted in a capillary column system loaded with modified nanoparticles and triton X‐114 as dispersion medium. 1‐Butyl‐3‐methylimidazolium hexafluorophosphate was employed as an extraction solvent. Acidified methanol in ultrasonic bath was used as desorption solvent, and elemental determination was carried out with flame atomic absorption spectrometer. Characterization of modified nanoparticles was performed with FTIR spectroscopy and transmission electron microscopy. Solution pH, nanoparticles amount, dispersant concentration, ionic liquid, and temperature were optimized for the extraction. Detection limits obtained for Cd, Pb, Ni, and Co were 0.183, 0.201, 0.241, and 0.192 μg L?1, respectively, and enhancement factors were 79.1, 86.4, 95.7, and 82.0, respectively. The reproducibility of the developed procedure was in the range of 3.98–5.10%. Validation was checked by applying the developed procedure on certified reference water samples. The microextraction based on nanoparticles decorated with Schiff's base was successfully applied for the extraction of Cd, Pb, Ni, and Co in real environmental water samples.  相似文献   

13.
C(18)-functionalized mesoporous silica shell was successfully fabricated on the surface of an Fe(3)O(4)/SiO(2) core to obtain an Fe(3)O(4)/SiO(2)/SiO(2)-C(18) magnetic microsphere. The microsphere exhibited high extraction efficiency to organic targets and strong anti-interference ability to natural organic matter. It could be easily isolated from water solution after extraction.  相似文献   

14.
This work focuses on the synthetic control of magnetic properties of mixed oxide magnetic nanoparticles of the general formula Fe(3-x)Co(x)O(4) (x < or = 0.33) in the protein cage ferritin. In this biomimetic approach, variations in the chemical synthesis result in the formation of single-phase Fe(3-x)Co(x)O(4) alloys or intimately mixed binary phase Fe/Co oxides, modifying the chemical structure and magnetic behavior of these particles, as characterized by static and dynamic magnetization measurements and X-ray absorption spectroscopy.  相似文献   

15.
The protein cage of the 12-subunit ferritin-like protein from Listeria innocua has been utilized as a size and shape constrained reaction environment for the synthesis of two cobalt oxide minerals, Co(3)O(4) and Co(O)OH. Reaction of Co(II) with H(2)O(2) at pH 8.5 under either elevated temperature (65 degrees C) or ambient temperature (23 degrees C) resulted in the formation of cobalt oxide nanoparticles encapsulated within the protein cage. At elevated temperatures, Co(3)O(4) was formed while at lower temperature the oxyhydroxide Co(O)OH was found. Mineral particles, commensurate in size with the internal dimensions of the protein (5 nm), were imaged by transmission electron microscopy and shown to be surrounded by the intact protein cage. The minerals were investigated by electron diffraction and revealed a crystalline Co(3)O(4) phase and an amorphous Co(O)OH phase. Further investigation of these composite materials using size exclusion chromatography, gel electrophoresis, dynamic light scattering, and zeta potential measurements indicated that the mineral was encapsulated within the protein cage giving rise to properties of both the mineral and protein components.  相似文献   

16.
The hydrothermal reactions of MCl(2).6H2O (M = Co, Ni) NaVO3, 4,4'-dipyridylamine (dpa), and H2O yield materials of the type [M(Hdpa)2V4O12] (M = Co (1), Ni (2)). The two-dimensional structures of 1 and 2 are constructed from bimetallic oxide networks (MV4O12)n2n- with monodentate Hdpa projecting the protonated ring into the interlamellar region. The oxide network may be described as ruffled chains of corner-sharing (VO4) tetrahedra linked by (NiO4N2) octahedra into the two-dimensional assembly. Crystal data: C10H10Co0.5N3O6V2(1), monoclinic P2(1)/c, a = 10.388(1) A, b = 7.6749(7) A, c = 16.702(2) A, beta = 102.516(1) degrees, Z = 4. C10H10N3Ni0.5O6V2 (2), monoclinic, P2(1)/c, c = 10.3815(2) A, b = 7.7044(2) A, c = 16.6638(4) A, beta = 102.573(1) degrees, Z = 4.  相似文献   

17.
The potential energy surface (PES) corresponding to the Co(+)-mediated oxidation of ethane by N(2)O has been investigated by using density functional theory (DFT). After initial N(2)O reduction by Co(+) to CoO(+), ethane oxidation by the nascent oxide involves C-H activation followed by two possible pathways, i.e., C-O coupling accounting for ethanol, Co(+)-mediated β-H shift giving the energetically favorable product of CoC(2)H(4)(+) + H(2)O, with minor CoOH(2)(+) + C(2)H(4). CoC(2)H(4)(+) could react with another N(2)O to yield (C(2)H(4))Co(+)O, which could subsequently undergo a cyclization mechanism accounting for acetaldehyde and oxirane and/or a direct H-abstraction mechansim for ethenol. Loss of oxirane and ethenol is hampered by respective endothermicity and high kinetics barrier, whereas acetaldehyde elimination is much energetically favorable. CoOH(2)(+) could facilely react with N(2)O to form OCoOH(2)(+), rather than Co(OH)(2)(+) or CoO(+).  相似文献   

18.
A series of Co/Mg–Al oxide samples,CoMgAl-x(x=(Mg+Co)/Al molar ratio of 1–5),were prepared by the self-combustion method followed by H2reduction.The catalytic performance and stability of the samples were studied in dry reforming of CH4.XRD and H2-TPR characterization results showed that the reduced CoMgAl-x samples mainly consisted of solid solution and spinel phases with cobalt particles.The spinel phases contained Co3O4 and Con Mg1-n Al2O4(0≦n≦1)varying with the(Mg+Co)/Al ratio.The effect of (Mg+Co)/Al molar ratio on the catalytic behavior was investigated in detail and CoMgAl-3 exhibited the highest catalytic activity and stability among the catalysts studied.  相似文献   

19.
A novel and simple method for the determination of active endocrine disrupter compounds (octylphenol OP, and nonylphenol NP) in paper using microwave-assisted extraction (MAE) and headspace solid-phase microextraction, coupled with gas chromatography-mass spectrometry has been developed. Parameters affecting the efficiency in the MAE process such as exposure time and extraction solvent were studied in order to determine operating conditions. The optimised method was linear over the range studied (1.25-125 microg kg(-1) for OP and 9.50-950 microg kg(-1) for NP) and showed good level of precision, with a RSD lower than 10% and detection limits at 0.10 and 4.56 microg kg(-1) for OP and NP, respectively. The results obtained from six different types of paper revealed the presence of the target compounds in all samples analysed, at levels ranging between 3 and 211 microg kg(-1).  相似文献   

20.
In searching for coordination polymers containing the highly polarized 5-nitro-pyrimidin-2-olate ligand (NP), a number of species containing 3d transition metals have been prepared and characterized, namely Co(NP)2(H2O)4, [Co(NP)2]n, Ni(NP)2(H2O)4, [Ni(NP)2]x, and [Zn(NP)2]n. Their structures have been determined by X-ray powder diffraction methods. The hydrated compounds contain mononuclear M(NP)2(H2O)4 units interconnected by means of a three-dimensional (3D) network of hydrogen bonds. The homoleptic species, at variance from the already known metal(II) pyrimidin-2-olate ones, crystallize as two-dimensional (2D) slabs, where the metal coordination is of the MN3O kind. The electron-withdrawing nitro group, never bound to the metal ion, is likely to influence the observed stereochemistry through steric and dipolar effects within the crystal lattice. The thermal, spectroscopic, and magnetic properties of these species are presented. The M(NP)2(H2O)4/[M(NP)2]x,n systems interconvert reversibly upon dehydration/rehydration processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号