首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
2.
Electronic relaxation dynamics of water cluster anions   总被引:1,自引:0,他引:1  
The electronic relaxation dynamics of water cluster anions, (H(2)O)(n)(-), have been studied with time-resolved photoelectron imaging. In this investigation, the excess electron was excited through the p<--s transition with an ultrafast laser pulse, with subsequent electronic evolution monitored by photodetachment. All excited-state lifetimes exhibit a significant isotope effect (tau(D)2(O)/tau(H)2(O) approximately 2). Additionally, marked dynamical differences are found for two classes of water cluster anions, isomers I and II, previously assigned as clusters with internally solvated and surface-bound electrons, respectively. Isomer I clusters with n > or = 25 decay exclusively by internal conversion, with relaxation times that extrapolate linearly with 1/n toward an internal conversion lifetime of 50 fs in bulk water. Smaller isomer I clusters (13 < or = n < or = 25) decay through a combination of excited-state autodetachment and internal conversion. The relaxation of isomer II clusters shows no significant size dependence over the range of n = 60-100, with autodetachment an important decay channel following excitation of these clusters. Photoelectron angular distributions (PADs) were measured for isomer I and isomer II clusters. The large differences in dynamical trends, relaxation mechanisms, and PADs between large isomer I and isomer II clusters are consistent with their assignment to very different electron binding motifs.  相似文献   

3.
The electronic energy of atoms and molecules may be evaluated accurately by the use of wave functions where the interelectronic distances are explicitly present. In particular, explicitly correlated Gaussian-type functions make these types of calculations feasible and computationally tractable even for more extended systems. The resulting multielectron integrals may be reduced to standard one- and two-electron integrals that are readily evaluated. Initial calculations have been made for the Be atom where all four electrons were correlated at the same time. The preliminary results show that accurate results may be obtained. © 1993 John Wiley & Sons, Inc.  相似文献   

4.
In this paper we present a theoretical and computational study of extreme multielectron ionization (involving the stripping of all the electrons from light, first-row atoms, and the production of heavily charged ions, e.g., Xe(+q) (q< or =36) from heavy atoms) in elemental and molecular clusters of Xe(n),(D(2))(n), and (CD(4))(n) (n=55-1061) in ultraintense (intensity I=10(15)-10(19) W cm(-2)) laser fields. Single atom or molecule multielectron ionization can be adequately described by the semiclassical barrier suppression ionization (BSI) mechanism. Extreme cluster multielectron ionization is distinct from that of a single atomic or molecular species in terms of the mechanisms, the ionization level and the time scales for electron dynamics and for nuclear motion. The novel compound mechanism of cluster multielectron ionization, which applies when the cluster size (radius R(0)) considerably exceeds the barrier distance for the BSI of a single constituent, involves a sequential-parallel, inner-outer ionization. The cluster inner ionization driven by the BSI for the constituents is induced by a composite field consisting of the laser field and inner fields. The energetics and dynamics of the system consisting of high energy (< or =3 keV) electrons and of less, similar 100 keV ions in the laser field was treated by molecular dynamics simulations, which incorporate electron-electron, electron-ion, ion-ion, and charge-laser interactions. High-energy electron dynamics also incorporates relativistic effects and includes magnetic field effects. We treat inner ionization considering inner field ignition, screening and fluctuation contributions as well as small [(< or =13%)] impact ionization contributions. Subsequent to inner ionization a charged nanoplasma is contained within the cluster, whose response to the composite (laser+inner) field results in outer ionization, which can be approximately described by an entire cluster barrier suppression ionization mechanism.  相似文献   

5.
In previous works, it was predicted that electronic and nuclear ring currents in degenerate excited states of atomic and molecular systems persist after the end of driven circularly polarized atto- or femtosecond laser pulses on relatively long time scales, often on pico- or nanosecond time scales, before spontaneous emission occurs. Although this conclusion is true in the center of mass frame, it is not true in the laboratory frame, where the translation has to be considered. In this theoretical work, the analytic formulas for the ring current densities, electric ring currents, mean ring current radii, and induced magnetic fields at the ring center, depending on the translational wavepacket widths, are derived. It shows that the ring currents and the corresponding induced magnetic fields in the laboratory frame persist on shorter timecales due to spreading of translational wavepackets. The electronic ring currents in 2p(±) orbitals of the hydrogen-like systems decay on the femtosecond time scale, but the corresponding nuclear ring currents with giant induced magnetic fields (for example up to 0.54 MT for (7)Li(2+)) and very small mean ring current radii on the femtometer scale decay on the very short, zeptosecond time scale, according to the Heisenberg uncertainty principle. The theory is also applied to ring currents in many-electron atoms and ions as well as to nuclear ring currents in pseudorotating molecules. For example, in the first triply degenerate pseudorotational states |v(1)l(±1)> of the tetrahedral molecule OsH(4), the ring currents of the heavy central nucleus Os decay on the attosecond time scale.  相似文献   

6.
The validity of the Hund rule in atomic orbitals (AO s) of the carbon atoms inside closed-shell molecules, such as acetylene, ethylene, and ethane, is examined. Electron-pair populations and contributions of the two-electron covalent structures with parallel (?) and antiparallel (↑↓) spins are calculated by multielectron population analysis of MO + CI wave functions. Such an analysis, which allows the visualization of various cooperative electronic effects in some target AO s, is extended on the basis of (strictly orthogonal) hybrid orbitals. Although the HF level shows, incorrectly, that the Hund rule is not satisfied, the CI clearly shows a preference for (?) spins to those of (↑↓): This holds for both the electron-pair populations [those of (↑↓) spins diminish with the CI more drastically than those of (?) spins], as well as for contributions of the two-electron covalent structures [those of (?) spins increase with the CI more drastically than do those of (?) spins]. The calculation of the correlation functions (or dependent functions) in AO space allows the comparison of repulsive or “attractive” behaviour of (?) and (↑↓) spins in various AO couples. Mutual dependence of the two electrons inside the sigma system increases in the series ethane < ethylene < acetylene. Also found is that parallel spins in (pure) AO s of sigma systems are preferred to the antiparallel spins when going from ethane to acetylene. The preference parallel–antiparallel spins in AO s belonging to two different atoms, including hydrogens, is also examined. © 1993 John Wiley & Sons, Inc.  相似文献   

7.
A simplified LCAO-DFT-LDA scheme for calculations of structure and electronic structure of large molecules, clusters, and solids is presented. Forces on the atoms are calculated in a semiempirical way considering the electronic states. The small computational effort of this treatment allows one to perform molecular dynamics (MD ) simulations of molecules and clusters up to a few hundred atoms as well as corresponding simulations of condensed systems within the Born-Oppenheimer approximation. The accuracy of the method is illustrated by the results of calculations for a series of small molecules and clusters. © 1996 John Wiley & Sons, Inc.  相似文献   

8.
Various approximate models to describe the electronic properties of some families of clusters are reviewed. They correspond to specific elementary situations close to the Fermi level where one or few electrons are either removed from (or added to) a closed shell wavefunction. Simple hole-particule excitations are also considered. The models discussed involve diatomics-in-molecules schemes, use of pseudopotential framework extended to replace inert atoms, and finally combinations of both techniques for excited states. Applications to electronic structure of alkaline earth clusters, rare-gas systems or chromophores interacting with rare-gas systems are given also prospects for more complex molecular nanosystems or assemblies.  相似文献   

9.
Metal atoms and clusters exhibit chemical properties that are significantly different or totally absent in comparison to their bulk counterparts. Such peculiarity makes them potential building units for the generation of novel catalysts. Investigations of the gas‐phase reactions between size‐ and charge‐selected atoms/clusters and small molecules have provided fundamental insights into their intrinsic reactivity, thus leading to a guiding principle for the rational design of the single‐atom and cluster‐based catalysts. Especially, recent gas‐phase studies have elucidated that small molecules such as O2, CO2, and CH3I can be catalytically activated by negatively‐charged atoms/clusters via donation of a partial electronic charge. This Minireview showcases typical examples of such “reductive activation” processes promoted by anions of metal atoms and clusters. Here, we focus on anionic atoms/clusters of coinage metals (Cu, Ag, and Au) owing to the simplicity of their electronic structures. The determination of a correlation between their activation modes and the electronic structures might be helpful for the future development of innovative coinage metal catalysts.  相似文献   

10.
R. Kumar  Dr. N. Vaval 《Chemphyschem》2023,24(1):e202200340
Electronically excited atoms or molecules in an environment are often subject to interatomic/intermolecular Coulombic decay (ICD) and/or electron transfer mediated decay (ETMD) mechanisms. A few of the numerous variables that can impact these non-radiative decay mechanisms include bond distance, the number of nearby atoms or molecules, and the polarisation effect. In this paper, we have studied the effect of protonation and deprotonation on the ionization potential (IP), double ionization potential (DIP), and lifetime (or decay width) of the temporary bound state in these non-radiative decay processes. We have chosen LiH-NH3 and LiH-H2O as test systems. The equation of motion coupled cluster singles and doubles method augmented by complex absorbing potential (CAP-EOM-CCSD) has been used in calculating the energetic position of the decaying state and the system's decay rate. Deprotonation of LiH-NH3/LiH-H2O either from the metal center (LiH) or from ammonia/water lowers the IP and DIP compared to the neutral systems. In contrast, protonation increases these quantities compared to neutral systems. The protonation closes the inner valence state relaxation channels for ICD/ETMD. For example, the decay of the O-2s/N-2s state stops in protonated systems (LiH2+-H2O, LiH2+-NH3, and LiH-NH4+). Our study also shows that the efficiency, i. e., the rate of ICD/ETMD, can be altered by protonation and deprotonation. It is expected to have implications for chemical and biological systems.  相似文献   

11.
12.
The physical interactions among electrons and nuclei, responsible for the chemistry of atoms and molecules, is well described by quantum mechanics and chemistry is therefore fully described by the solutions of the Schr?dinger equation. In all but the simplest systems we must be content with approximate solutions, the principal difficulty being the treatment of the correlation between the motions of the many electrons, arising from their mutual repulsion. This article aims to provide a clear understanding of the physical concept of electron correlation and the modern methods used for its approximation. Using helium as a simple case study and beginning with an uncorrelated orbital picture of electronic motion, we first introduce Fermi correlation, arising from the symmetry requirements of the exact wave function, and then consider the Coulomb correlation arising from the mutual Coulomb repulsion between the electrons. Finally, we briefly discuss the general treatment of electron correlation in modern electronic-structure theory, focussing on the Hartree-Fock and coupled-cluster methods and addressing static and dynamical Coulomb correlation.  相似文献   

13.
The interest in following the evolution of the valence electronic structure of atoms and molecules during chemical reactions on a femtosecond time scale is discussed. By explicitly mapping the occupied part of the electronic structure with femtosecond pump-probe schemes one essentially follows the electrons making the bonds while the bonds change. This holds the key to unprecedented insight into chemical bonding in short-lived intermediates and reveals the coupled motion of electrons and nuclei. Examples from the recent literature on small molecules and anionic clusters in the gas phase and on atoms and molecules on surfaces using lab-based femtosecond laser methods are used to demonstrate the case. They highlight how the evolution of the valence electronic structure can be probed with time-resolved photoelectron spectroscopy with ultraviolet (UV) probe photon energies of up to 6 eV. It is shown how new insight can be gained by extending the probing wavelength into the vacuum-ultraviolet (VUV) region to photon energies of 20 eV and more by accessing the whole occupied valence electronic structure with time-resolved VUV photoelectron spectroscopy. Finally, the importance of soft X-ray free-electron lasers with probe photon energies of several hundred eV and femtosecond pulses and in particular the key role of femtosecond time-resolved soft X-ray emission spectroscopy or resonant inelastic X-ray scattering for mapping the electronic structure during chemical reactions is discussed.  相似文献   

14.
研究原子团簇上小分子的吸附和反应对认识一些复杂化学过程的微观机理非常重要,为了表征小分子如何吸附在原子团簇上,我们研制了一套氦原子碰撞诱导解离串级飞行时间质谱装置.该装置配有激光溅射团簇源,团簇在快速流动管里与一氧化碳、水等小分子发生反应,产物团簇通过第一级飞行时间质谱选质后与一束氦气(He)发生碰撞,使用第二级飞行时间质谱检测碰撞碎片的分布.结果表明:一些过渡金属氧化物团簇上小分子的弱吸附、强吸附以及氧化性吸附能够通过该实验装置进行表征.  相似文献   

15.
The equilibrium structure, stability, and electronic properties of the Al(13)X (X=H,Au,Li,Na,K,Rb,Cs) clusters have been studied using a combination of photoelectron spectroscopy experiment and density functional theory. All these clusters constitute 40 electron systems with 39 electrons contributed by the 13 Al atoms and 1 electron contributed by each of the X (X=H,Au,Li,Na,K,Rb,Cs) atom. A systematic study allows us to investigate whether all electrons contributed by the X atoms are alike and whether the structure, stability, and properties of all the magic clusters are similar. Furthermore, quantitative agreement between the calculated and the measured electron affinities and vertical detachment energies enable us to identify the ground state geometries of these clusters both in neutral and anionic configurations.  相似文献   

16.
Experimental work has shown that small amounts of HCl strongly enhance electron capture in ice films. The purpose of the present study was to investigate the effect of adsorbed HCl on the interaction of electrons with small clusters of water. Studies were made with clusters of 6 and 12 water molecules with various geometries both with and without one HCl attached. A number of distinct HCl coordination motifs were examined. All of the neutral structures with HCl exhibited zero thresholds for electron attachment and formed dipole bound anionic states (DBS). The relaxation processes for these "initial DBS" depended on the number of H(2)O (n) and on the number and type of H-bonds to the HCl (x). The initial DBS of systems with only O-H...Cl H-binding underwent dissociative electron attachment (DEA), forming H atoms. Relaxation for systems with ClH...OH(2) bonds was more complex. For the two layer n = 12 systems with x = 2 or 3 the HCl proton moved to the nearest oxygen to form H(3)O(+). Then rearrangement of the proton network occurred, and the Cl(-) became solvated by three HO-H...Cl(-) bonds. The presence of Cl(-) and H(3)O(+) increases the dipole moment and the electron binding energy (EBE) of the network. Further stabilization is achieved by decay into deeper DBS electron traps and/or by reaction of the excess electron with H(3)O(+) to form H(*) atoms. The HCl(H(2)O)(6) clusters with a single Cl-H...OH(2) bond behaved differently. They increased their stability by becoming more linear. This raised the dipole moment and the EBE therefore increased, reducing the total energy. None of these species showed any signs of increasing the number of H-bonds to Cl. The implication of these observations for the interpretation of the results of the experiments with 0.2 monolayer of HCl on 5 monolayer of H(2)O at 20 K, and on the possible role of cosmic ray-induced ionization in polar stratospheric clouds in ozone depletion is discussed.  相似文献   

17.
We report ultrafast electron transfer (ET) in charge-transfer complexes that shows solvent relaxation effects consistent with adiabatic crossover models of nonadiabatic ET. The complexes of either dimethyl viologen (MV) or diheptyl viologen (HV) with 4,4'-biphenol (BP) (MVBP or HVBP complexes) have identical charge-transfer spectra and kinetics in ethylene glycol with approximately 900 fs ET decay. We assign this decay time as largely due to adiabatic control of a predicted approximately 40 fs nonadiabatic ET. The MVBP decay in methanol of 470 fs is reduced in mixtures having low (2-20%) concentrations of acetonitrile to as short as 330 fs; these effects are associated with faster relaxation time in methanol and its mixtures. In contrast, HVBP has much longer ET decay in methanol (730 fs) and mixture effects that only reduce its decay to 550 fs. We identify the heptyl substituent as creating major perturbations to solvent relaxation times in the methanol solvation shell of HVBP. These charge-transfer systems have reasonably well-defined geometry with weak electronic coupling where the electronic transitions are not dependent on intramolecular motions. We used a nonadiabatic ET model with several models for adiabatic crossover predictions to discuss the small variation of energy gap with solvent and the ET rates derived from adiabatic solvent control. A time correlation model of solvent relaxation was used to define the solvent relaxation times for this case of approximately zero-barrier ET.  相似文献   

18.
We developed new model core potentials (MCPs) for s-block elements from Na to Ra, in which the outer core (n-1)s and (n-1)p electrons are treated explicitly together with the ns electrons. By adding suitable correlating functions, we demonstrated that the present MCP basis sets show excellent performance in describing the electronic structures of atoms and molecules, bringing about accurate ionization potentials of atoms and very good spectroscopic constants of ionic and covalent molecules. The results obtained with the new MCPs are very close to the ones obtained using the all-electron correlation consistent basis sets of Dunning.  相似文献   

19.
High harmonic radiation is produced when atoms or molecules are ionized by an intense femtosecond laser pulse. The radiated spectrum has been shown experimentally to contain information on the electronic structure of the molecule, which can be interpreted as an image of a single molecular orbital. Previous theory for high harmonic generation has been limited to the single-active-electron approximation. Utilizing semisudden approximation, the authors develop a theory of the recombination step in high harmonic generation and tomographic reconstruction in multielectron systems, taking into account electron spin statistics and electron-electron correlations within the parent molecule and the ion. They show that the resulting corrections significantly modify the theoretical predictions, and bring them in a better agreement with experiment. They further show that exchange contributions to harmonic radiation can be used to extract additional information on the electronic wave function.  相似文献   

20.
Although chemical phenomena are primarily associated with electrons in atoms, ions, and molecules, the masses, charges, spins, and other properties of the nuclei in these species contribute significantly as well. Isotopes, for instance, have proven invaluable in chemistry, in particular the elucidation of reaction mechanisms. Elements with unstable nuclei, for example carbon-14 undergoing beta decay, have enriched chemistry and many other scientific disciplines. The nuclei of all elements have a much more subtle and largely unknown effect on chemical phenomena. All nuclei are innately chiral and, because electrons can penetrate nuclei, all atoms and molecules are likewise chiral. This article describes in considerable detail the discovery of chiral nuclei, how this unusual chirality may influence the chemical behavior of atoms and molecules, and how atomic chirality may have been responsible for the synthesis of optically active molecules in the pre-biotic world.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号