首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 181 毫秒
1.
The temperature magnetic phase diagrams of the dimorphic HoSi compound were studied by neutron diffraction. The sample comprises 35.5% CrB- (Cmcm) and 64.5% FeB-type (Pnma) of structure. Both phases order antiferromagnetically below TN=25 K and undergo first-order magnetic transitions at Tic=16.5 K. Their T-phase diagrams comprise a low temperature (LT) 2.7 K−Tic and a high temperature (HT) range TicTN with distinct wave vectors.The LT magnetic ordering of the CrB-type HoSi with the wave vector q1=(1/2, 0, 1/2) corresponds to a uniaxial magnetic structure, with the Ho moments along the shortest axis c. At 2.7 K the ordered moment value is 8.6(2) μB/Ho atom. The HT ordering, described by the wave vector q2=(q2x, 0, q2z) with a T-variable length, corresponds to an amplitude modulated structure.The magnetic ordering of the FeB-type HoSi requires two symmetry independent vectors q3=(0, q3y, q3z) for the LT- and q4=(q4x, q4y, 0) for the HT range. Both vectors correspond to sine wave modulated structures with the Ho magnetic moments confined along the shortest axis b. The q3 vector has an almost invariable length vs. T close to ≈(0, 9/17, 1/11). At 2.7 K the amplitude of the wave is 10.9(1) μB/Ho atom. At Ticq3 jumps to the wave vector q4=(q4x, q4y, 0) with a T-variable length. At 17 K q4=(0.092(1), 0.538(3), 0). Around Tic there is a narrow coexistence range of the q3 and q4 competing phases. Various models are discussed and compared with the isomorphic RSi (R=rare earth) compounds counterparts of HoSi, a comparison that has led us to briefly review the magnetic structures available in the literature for this interesting class of compounds.  相似文献   

2.
The low-temperature magnetic ordering of the dimorphic DySi compound has been studied at 1.5 K by neutron diffraction on two polycrystalline samples. The samples comprise various amounts of the two orthorhombic modifications: CrB-type (Cmcm Nr. 63, all atoms at 4c site: (0, y, )) and FeB-type (Pnma Nr. 62, all atoms at 4c site: (x, , z)), both order antiferromagnetically (TN≈38 K). The CrB-type phase orders with a uniaxial structure with the wave vector q1=(0, 0, ) requiring a doubling of the c-axis. The Dy moments point along the linear chain with the shortest distance c. At 1.5 K, the ordered moment value is 8.57(1) μB/Dy atom.Two symmetry independent wave vectors describe the 1.5 K magnetic ordering of the FeB-type phase: q2=(0, , ) and q3=(0, 0.484(1), 0.0892(1)), coexisting in form of domains. In both structures the magnetic moments are confined to the (0 0 1) plane at an angle of 2(2)° and 22(3)° from the shortest axis b, respectively. Both structures correspond to sine wave modulations. The amplitude of the q2 wave is mo=7.5(1) μB/Dy atom and that of q3 8.2(1) μB/Dy atom. The wave vector q2 when referring to the (a, 2b, c) cell and the wave vector q=(0, 0, ) corresponds to a transversal modulation, which by a proper origin choice can be also described as an antiphase domain structure with two amplitudes. The moments point to the b-axis and are stacked in the sequence (+mo/2, −mo/2, −mo, −mo/2, +mo/2, +mo, …) along the c-direction, while tb acts as an antitranslation. For the q3 phase, the local moment value depends on the atom position in the wave. We also discuss the case where q3 and q2 act simultaneously in physical space.  相似文献   

3.
The contribution of soft mode at Sb atom's sites, to the temperature dependences of Sb atom's equilibrium position's difference Δz(T) has been studied theoretically, when SbSBr crystal is deformed along a(x), b(y) and c(z)-axis in paraelectric phase and is deformed along c(z)-axis in ferroelectric phase. The largest change of Δz33(T) occurs in the ferroelectric phase near the phase transition temperature in the range from 16 K to 21 K. The temperature dependence of Sb atom's equilibrium position's displacements Δz33 is very similar to the temperature dependence of experimental piezoelectric modulus, when SbSBr crystal is deformed in the direction of c(z)-axis in ferroelectric phase.  相似文献   

4.
Effect of 3.4 wt.% C and 5 wt.% SiC doping into the standard in situ (IN) process and mechanically alloyed (MA) MgB2 was studied. Powders of IN and MA process were carried out in air and in argon filled glove box, respectively. Wire samples were prepared by two-axial rolling deformation of IN and MA powders inside the Ti tube. Titanium as sheath material allows to use higher sintering temperatures, we used 700 °C and 800 °C for 30 min in Argon. Critical current densities (Jc) were measured at variable temperatures 4.2 K, 10 K, 15 K and 20 K in the external magnetic fields ranging to 15 T. Critical temperatures, upper critical fields and irreversibility fields of IN and MA with SiC and C additions are compared and discussed. The highest transport properties were observed for wires with MA SiC doped MgB2 in the whole scale of temperatures 4.2–20 K. Upper critical field was rapidly enhanced in the case of carbon doped MA samples at 4.2 K. MA samples have shown decreased Jc values for higher temperatures (15 K, 20 K), in some case even worse than for the not doped reference IN sample. Carbon substitution and grain connectivity of analyzed samples are compared and discussed. Presented results show that for 20 K applications some new ways (additions) have to be found for increasing the Jc substantially.  相似文献   

5.
Photomagnetism is one of the most attractive topics in recent research on molecular solids. In order to produce a photo-controllable magnet, we have synthesized a novel organic-inorganic hybrid system coupled with a photochromic diarylethene anion, 2,2′-dimethyl-3,3′-(perfluorocyclopentene-1,2-diyl)bis(benzo[b]thiophene-6-sulfonate) (1a) and cobalt LDHs (layered double hydroxides). Based on the elemental analysis, the title compound, which was synthesized by the anion exchange reaction between Co2(OH)3(CH3COO)·H2O (2) and 1a, has the chemical composition, Co4(OH)7(1a)0.5·3H2O (3). Powder X-ray diffraction analysis revealed the interlayer distance of c=27.8 Å. The magnetic susceptibility measurements elucidated the ferromagnetic intra- and inter-layer interactions and the Curie temperature of Tc=9 K. By UV irradiation of 313 nm, 3 shows the photo-isomerization of diarylethene anion from the open form to the closed one in solid state, which leads to the decreases in the coercive field and the remnant magnetization. Furthermore, the photo-excited state is returned to the initial state (open form) almost reversibly by visible irradiation of 550 nm.  相似文献   

6.
A new molecular solid, [1-(4′-bromo-2′-fluorobenzyl)-4-dimetylaminopyridinium]-bis(maleonitriledithiolato)nickel(III), (BrFBzPyN(CH3)2(Ni(mnt)2)(1), has been prepared and characterized by elemental analyses, IR, ESI-MS spectra, single crystal X-ray diffraction and magnetic measurements. Compound 1 crystallizes in the orthorhombic space group Pnma, a=20.579(4) Å, b=7.078(1) Å, c=17.942(4) Å, α=β=γ=90°, V=2613.3(9) Å3, Z=4. The Ni(III) ions of 1 form a quasi-one-dimensional Zigzag magnetic chain within a Ni(mnt)2 column through Ni?S, S?S, Ni?Ni, or π?π interactions with an Ni?Ni distance of 4.227 Å. Magnetic susceptibility measurements in the temperature range 2-300 K show that 1 exhibits a spin-gap transition around 200 K, and antiferromagnetic interaction in the high-temperature phase (HT) and spin gap in the low-temperature phase (LT). The transition for 1 is second-order phase transition as determined by DSC analyses.  相似文献   

7.
Si(1 1 0) surfaces covered with small amounts of In deposit and then annealed at high temperature were investigated by RHEED, and two kinds of superstructures with A = 3a and B = −a + 4b, and A = 3a − 2b and B = −2a + 4b as primitive translational vectors are reported to form on the surfaces.  相似文献   

8.
We present a neutron powder diffraction investigation of the magnetic structure of La3NiGe2-type Tb3NiGe2 and Mn5Si3-type Tb5NixGe3−x (x=0, 0.3) compounds. It is found that below∼135 K Tb3NiGe2 exhibits a commensurate b-collinear ferrimagnetic ordering with C2h′={1, mz, 1′×2z, 1′×1?} magnetic point group. The Mn5Si3-type Tb5Ge3 and Tb5Ni0.3Ge2.7 compounds are found to present a flat spiral type antiferromagnetic ordering at 85 and ≥89 K, respectively. The Ni for Ge substitution is found to decrease the flat spiral ordered magnetic unit cell from a×a×40c of Tb5Ge3 (below 40 K) down to a×a×5c for Tb5Ni0.3Ge2.7 (below ∼10 K).  相似文献   

9.
Three nickel complexes with a new multi-sulfur 1,2-dithiolene ligand, (n-Bu4N)[Ni(cddt)2] 1, (Ph4P)[Ni(cddt)2] 2 and [Ni(cddt)2] 3 (cddt=4a, 6, 7, 7a-5H-cyclopenta[b]-1,4-dithiin-2,3-dithiolate), have been synthesized and characterized by electrochemical measurements, IR, EPR and UV-Vis-NIR spectroscopies. The crystal structure of complex 2 is determined. Their optical nonlinearities are measured by the Z-scan technique with an 8 ns pulsed laser at 532 nm and all exhibit NLO absorptive abilities. Complexes 1 and 2 both exhibit effective self-defocusing performance (n2=−5.81×10−10 esu for 1 and −4.51×10−10 esu for 2). The optical limiting (OL) effects were observed with nanosecond and picosecond laser pulses. The OL capability of complex 3 is superior to C60 at the same experimental condition in ns measurements.  相似文献   

10.
11.
The quenching behavior of the triplets of C60 by various aniline derivatives (1a-d and 2a-e) was investigated by means of laser flash photolysis in benzonitrile at 293 K. Electron transfer process was proposed to be the main mechanism because of the direct detection of radical ions of aniline derivatives and C60 in time-resolved transient absorption spectra. The quenching rate constants (kq) of by different substrates determined at 740 nm approach or reach the diffusion-controlled limit. DFT method was employed to calculate the unknown oxidation potentials of substrates in solution. With these Eox values, free energy changes (ΔG) were obtained through Rehm-Weller equation. Dependence of observed quenching rate constants on the free energy changes further indicates the photoinduced reactions between 3C60* and substrates proceed through an electron transfer mechanism. Obtained kq values for the aniline derivatives are impacted obviously by ground-state configurations and the kinds substituents quantified by Hammett σ constant. Good correlation between log kq and σ values conforms to the empirical Hammett equation. A more negative ρ value (−3.356) was gained for anilines (2a-e) than that of N,N-dimethylanilines (1a-d) (−1.382), which suggests a more susceptible reactivity for the former substrates. Charge density distribution of reaction center “N” originated from quantum calculation supports this suggestion. In addition, a relationship between quenching rate constants and solvent viscosity was gained from C60/dimethyl-p-toluidine system in altered mixtures of acetonitrile and toluene.  相似文献   

12.
The nonlinear optical absorptions of two 5,5′-bis(diphenylphosphino)-2,2′-bithiophene derivatives, Ph2(X)P(C4H2S)2P(X)Ph2 (X = O, 1; S, 2), have been investigated by direct transmission measurement with both picosecond and nanosecond laser pulses from 420 nm to 480 nm. Saturated dichloromethane solutions of 1 and 2 exhibit strong nonlinear optical absorptions in this violet-blue spectral region with that of 2 being stronger at all wavelengths. In the picosecond regime, at 420 nm, the transmittance rapidly falls to 50% when the incident fluence is 0.22 J/cm2 for 1 and 0.11 J/cm2 for 2. Two-photon absorption appears to be the primary mechanism for this nonlinear absorption. The two-photon absorption coefficients β for 1 (2.1 cm/GW) and 2 (4.4 cm/GM) were obtained by fitting the measurement of transmittance as the function of incident beam intensity at 420 nm. These β values are comparable with some of the best results obtained for organic materials in the green, red and infrared spectral region. Both compounds also show fluorescence with an emission peak at 390 nm for 1 and 400 nm for 2. The fluorescence of 1 is considerably stronger than is that of 2. The combination of the wide band gap and strong fluorescence emission of 1 makes it a promising candidate as a host material for blue organic light emitting diodes.  相似文献   

13.
We previously derived a simple equation for solving time-dependent Bloch equations by a matrix operation. The purpose of this study was to present a theoretical and numerical consideration of the longitudinal (R = 1/T) and transverse relaxation rates in the rotating frame (R = 1/T), based on this method. First, we derived an equation describing the time evolution of the magnetization vector (M(t)) by expanding the matrix exponential into the eigenvalues and the corresponding eigenvectors using diagonalization. Second, we obtained the longitudinal magnetization vector in the rotating frame (M(t)) by taking the inner product of M(t) and the eigenvector with the smallest eigenvalue in modulus, and then we obtained the transverse magnetization vector in the rotating frame (M(t)) by subtracting M(t) from M(t). For comparison, we also computed the spin-locked magnetization vector. We derived the exact solutions for R and R from the eigenvalues, and compared them with those obtained numerically from M(t) and M(t), respectively. There was excellent agreement between them. From the exact solutions for R and R, R was found to be given by R2ρ = (2R2 + R1)/2 − R1ρ/2, where R1 and R2 denote the conventional longitudinal and transverse relaxation rates, respectively. We also derived M(t) and M(t) for bulk water protons, in which the effect of chemical exchange was taken into account using a 2-pool chemical exchange model, and we compared the R and R values obtained from the eigenvalues and those obtained numerically from M(t) and M(t). There was also excellent agreement between them. In conclusion, this study will be useful for better understanding of the longitudinal and transverse relaxations in the rotating frame and for analyzing the contrast mechanisms in T- and T-weighted MRI.  相似文献   

14.
Sensitized luminescence behavior of lanthanide (Ln=Eu3+, Tb3+) macrocyclic cyclen (1,4,7,10-tetraazacyclododecane) complexes bearing one or four benzophenone (BP) moieties as antenna (LnL1 and LnL4) has been studied in water. Despite higher molar extinction coefficient of EuL4 owing to four antennae, it shows only one-thirtieth the luminescence intensity of EuL1. Energy level of triplet excited-state of BP antenna (ET) is only a few kJ mol−1 higher than that of 5D2 excited-state of Eu3+, thus promoting a back energy transfer (BET) from 5D2 of Eu3+ to ground-state BP antennae. On EuL4 bearing four antennae, BET occurs more rapidly than that on EuL1, thus exhibiting much weaker luminescence. For Tb complexes, the energy gap between ET of BP antenna and 5D4 excited state of Tb3+ is large enough (>13 kJ mol−1), such that practically no BET occurs. The luminescence intensity of TbL4 is, however, lower (two-third) than that of TbL1. Time-resolved luminescence measurement reveals that hydration number of Tb3+ within TbL4 is twice that within TbL1. This is because the structural distortion of ligands on TbL4, caused by an intramolecular dipole-dipole interaction among the BP antennae, allows coordination of higher number of H2O molecules to Tb3+, thus leading to a strong Tb luminescence quenching via O-H oscillators.  相似文献   

15.
Schiff bases N,N′-o-phenylenebis (salicylideneimine) (H2L1), N,N′-p-phenylenebis (salicylideneimine) (H2L2) and their corresponding boron complexes (BF2)2L1, (BF2)2L2 were synthesized, respectively. The two boron complexes have been characterized by 1H NMR, mass spectrometry and elemental analysis, while the luminescent properties of them were investigated with UV-VIS spectroscopy and photoluminescence spectroscopy. Then the three-layer devices [ITO/NPB (60 nm)/(BF2)2L1 (50 nm)/Alq3 (20 nm)/LiF (1 nm)/Al (200 nm)] (device I) and [ITO/NPB (60 nm)/(BF2)2L2 (50 nm)/Alq3 (20 nm)/LiF (1 nm)/Al (200 nm)] (device II) were fabricated by vacuum deposition. These two devices both exhibited blue green emission at 500 nm, but showed different luminances and efficiencies.  相似文献   

16.
17.
We report synthesis and isomerization behaviors of sterically hindered azobenzene derivatives (1 and 2) with decyloxy and hydroxy groups, respectively, and their fluorescence enhancement under UV light irradiation characterized by means of absorption and fluorescence spectroscopy measurements. Upon irradiation of as-prepared solution (1) with UV light (∼200 mJ/cm2) a cis-rich photostationary state was reached. Obviously different from 2 showing very fast thermal cis-to-trans isomerization within 2 min, slow cis-to-trans thermal back isomerization of 1 with a long alkyl chain at ambient temperature was observed on the time scale of weeks. In contrast to no striking changes in absorption and fluorescence spectra of compound 2, the azobenzene 1 showed green fluorescence upon prolonged irradiation with UV light (about 3-8 J/cm2 exposure doses), although both the initial trans-rich and cis-rich states of azobenzene molecules were not fluorescent in solution. The stability of fluorescence efficiency caused by drying and redissolving processes was examined.  相似文献   

18.
The Er5Ge3 compound (Mn5Si3-type, hP16, P63/mcm) at 4 K shows magnetic ordering of the antiferromagnetic type. Its magnetic structure consists of sine modulated collinear magnetic moments of Er that are parallel to the c axis (with a propagation vector k=[0 0 ±0.3]). This corresponds to the magnetic unit cell (a a 10c), the values of the magnetic moment of the Er atoms being, as a general formula, MzM0 cos [2π(Z–1/4)(1–kZ)], with M0=9.2(2) μB at 4 K.  相似文献   

19.
4,4′-bis(N-carbazolyl)tolan (BCT) and 4,4′-bis[N-(3,6-di-t-butyl)carbazolyl]tolan (BCT-t-Bu) were synthesized as π-expanded analogs of 4,4′-bis(N-carbazolyl)biphenyl. Their photophysical characteristics both in solution and films were thoroughly investigated. Interestingly, the phosphorescence spectrum of BCT was significantly medium-dependent, and the emission maximum was red-shifted by 131 nm from 489 nm in solution at 77 K to 620 nm in a deposited film at 5 K, suggesting the presence of strong intermolecular interactions in the film. BCT and BCT-t-Bu were found to be useful as host materials for fluorescence-based organic light emitting diodes (OLEDs). However, their low triplet energy levels in films negated their potential to act as hosts in phosphorescence-based OLEDs.  相似文献   

20.
We report an electron paramagnetic resonance (EPR) study at 33.9 GHz and room temperature of oriented single crystal samples of bis(l-asparaginato)Zn(II) doped with Cu(II). The variation of the spectra with magnetic field orientation was measured in three crystal planes (a*b, bc and a*c, with a*=b×c). These spectra display two groups of four peaks arising from the hyperfine interaction with the ICu=3/2 nuclear spins of copper. They were assigned to Cu(II) ions in two lattice sites related by a 180° rotation around the b-crystal axis. The g and hyperfine coupling (A) tensors of the Cu(II) ions were evaluated from the single crystal data. Some indeterminacy in the assignment of the signals was avoided measuring the EPR spectrum of a powder sample. Their principal values are g1=2.060(1), g2=2.068(2), g3=2.283(2), and A1≈0.1×10−4, A2=13×10−4 and A3=165×10−4 cm−1. The eigenvectors corresponding to g3 and A3 are coincident within the experimental error; the other eigenvectors are rotated 5.6° in the perpendicular plane. Considering the crystal structure of bis(l-asparaginato)Zn(II), our EPR results indicate that the Cu(II) impurities replace Zn(II) ions in the host crystal. We propose a molecular model based on the EPR data and the structural information, and analyse the results comparing the measured values with those obtained in similar systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号