首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 619 毫秒
1.
We have studied the electron structure and magnetic properties of Heusler phase Co2YBi and half-Heusler phase CoYBi (Y=Mn, Cr) by using the full-potential linearized-augmented plane-wave (FLAPW) method. Co2MnBi and Co2CrBi are predicted to be half-metallic magnetism with a total magnetic moment of 6 and 5 μB, respectively, well consistent with the Slater-Pauling rule. We also predict CoMnBi to be half-metallic magnetism with a slight compression. The gap origin for Co2MnBi and Co2CrBi is due to the 3d electron splitting of Mn (Cr) and Co atoms, and the gap width depends on Co electron splitting. The atom coordination surroundings have a great influence on the electron structure, and consequently the Y site in the X2YZ structure has a more remarkable electron splitting than the X site due to the more symmetric surroundings. The investigation regarding the lattice constant dependence of magnetic moment shows that the Co magnetic moment exhibits an opposite behavior with the change of the lattice constant for Heusler and half-Heusler alloys, consequently leading to the different variation trends for total magnetic moment. The variation of total and atom magnetic moment versus lattice constant can be explained by the extent of 3d electron splitting and localization of Mn (Cr) and Co atoms for both the series of alloys.  相似文献   

2.
The electronic structures and magnetism of the half-Heusler alloys XCrAl (X=Fe, Co, Ni) and NiCrZ (Z=Al, Ga, In) have been investigated to search for new candidate half-metallic materials. Here, we predict that NiCrAl, and NiCrGa and NiCrIn are possible half-metals with an energy gap in the minority spin and a completely spin polarization at the Fermi level. The energy gap can be attributed to the covalent hybridization between the d states of the Ni and Cr atoms, which leads to the formation of bonding and antibonding peaks with a gap in between them. Their total magnetic moments are 1μB per unit cell; agree with the Slater-Pauling rule. The partial moment of Cr is largest in NiCrZ alloys and moments of Ni and Al are in antiferromagnetic alignment with Cr. Meanwhile, it is also found that FeCrAl is a normal ferromagnetic metal with a magnetic moment of 0.25μB per unit cell and CoCrAl is a semi-metal and non-magnetic.  相似文献   

3.
The electronic structure, the metallic and magnetic properties of metal phosphonate Co[(CH3PO3)(H2O)] have been studied by first-principles calculations, which were based on the density-functional theory (DFT) and the full potential linearized augmented plane wave (FPLAPW) method. The total energy, the spin magnetic moments and the density of the states (DOS) were all calculated. The calculations reveal that the compound Co[(CH3PO3)(H2O)] has a stable metallic antiferromagnetic (AFM) ground state and a half-metallic ferromagnetic (FM) metastable state. Based on the spin distribution obtained from calculations, it is found that the spin magnetic moment of the compound is mainly from the Co2+, with some small contributions from the oxygen, carbon and phosphorus atoms, and the spin magnetic moment per molecule is 5.000μB, which is in good agreement with the experimental results.  相似文献   

4.
In this paper, the Co-mixing calculation of the full Heusler alloy Cr2VSb was performed using a first-principles calculation method. The calculations revealed that, after mixing with Co, the Cr2VSb alloy can form a full Heusler alloy that is a half-metallic magnetic material with an equilibrium lattice parameter of 6.059 Å. Furthermore, the results showed that the magnetic properties of this alloy are mainly derived from the contributions of d electrons associated with the Cr, Co, and V atoms. Stress-induced changes in the lattice parameter had a significant influence on the magnetic moment of each atom, but, owing to mutual compensation, the total magnetic moment of the alloy remained unchanged. In terms of mechanical properties, the results revealed that the CrCoVSb alloy is an anisotropic ductile material.  相似文献   

5.
From the results of first principles tight-binding linear muffin-tin orbital (TB-LMTO) calculations, half-metallic ferromagnetism is proposed in Zn(TM)O2 with a chalcopyrite structure. The calculated electronic and magnetic property shows that consistent with the integer value for the total magnetic moment, half metallicity is obtained for ZnCrO2, ZnMnO2, ZnFeO2, ZnCoO2 and ZnNiO2. A careful analysis of the spin density reveals the ferromagnetic coupling between the p–d states and the cation dangling-bond p states, which is believed to be responsible for the stabilization of the ferromagnetic phase. The calculated heat of formation, bulk modulus and cohesive energy are reported.  相似文献   

6.
The electronic structure of the highly ordered alloy Cr3Co with the DO3 structure has been studied by FLAPW calculations. It is found that the ferrimagnetic state is stable and that the equilibrium lattice constant of Cr3Co equals 5.77 Å. A large peak in majority spin density of states (DOS) and an energy gap in minority spin DOS are observed at the Fermi level, which results in a high spin polarization of 90% in the ordered alloy Cr3Co. The total magnetic moment of Cr3Co is 3.12μB, which is close to the ideal value of 3μB derived from the Slater-Pauling curve. An antiparallel alignment between the moments on the Cr (A, C) sites and the Cr (B) sites is observed. Finally, the effect of lattice distortion on the electronic structure and on magnetic properties of Cr3Co compound is studied. A spin polarization higher than 80% can be obtained between 5.55 and 5.90 Å. With increasing lattice constant, the magnetic moments on the (A, C) sites increase and the moments on the (B, D) sites decrease. They compensate each other and make the total magnetic moment change only slightly.  相似文献   

7.
First-principles calculations have been performed to study the electronic band structure and ferromagnetic properties of the double perovskite Sr2CrReO6. The density of states (DOS), the total energy, and the spin magnetic moment were calculated. The calculations reveal that the Sr2CrReO6 has a stable ferromagnetic ground state and the spin magnetic moment per molecule is 1.0 μB, in good agreement with the experimental value. By analysis of the band structure, we propose that the ordered double perovskite Sr2CrReO6 is a strong candidate for half-metallic ferromagnet.  相似文献   

8.
The effect of Fe substitution for the vacant site in half-Heusler alloy CoCrAl is studied. A series of single phase CoFexCrAl (x=0.0, 0.25, 0.5, 0.75 and 1.0) alloys has been successfully synthesized. The lattice constant is found to increase almost linearly with increasing Fe content, indicating Fe atoms enter the lattice of CoCrAl instead of existing as a secondary phase. When Fe entering the vacant site, spin polarization occurs and the alloy turns from a semimetal in CoCrAl to a half-metallic ferromagnet (HMF) in CoFeCrAl. This is due to the reconstruction of the energy band with Fe substitution. The Curie temperature and saturation magnetic moments are enhanced and increase monotonically with increasing Fe content. The variation of the spin moment follows the Slater-Pauling curve and agrees with the theoretical calculation as well.  相似文献   

9.
The electronic structure and the ferromagnetism of CrS and CrP in the zinc-blende (ZB) phase are investigated by spin-polarized calculations with first-principles plane-wave pseudopotential method within the generalized gradient approximation for the exchange-correlation potential. From the analysis of the spin-dependent density of states, band structure and magnetic moment, we predict that ZB CrS and CrP at their respective equilibrium lattice constant are half-metallic ferromagnets with a magnetic moment of 4.00 and 3.00μB per formula unit, respectively. We also find that the ZB CrS maintains half-metallic ferromagnetism up to 3% compression of lattice constant while the half-metallic ferromagnetism for ZB CrP exists only near its equilibrium lattice constant.  相似文献   

10.
The electronic structure and magnetic properties of new Fe-based Heusler alloys Fe2TiZ (Z = Ga, Ge, As, In, Sn and Sb) have been studied by first-principles calculations. In these alloys, the 24-electron Fe2TiGe, Fe2TiSn are nonmagnetic semiconductors and other compounds are all ferrimagnetic metals. Fe2TiAs and Fe2TiSb are predicted to be half-metals with 100% spin polarization. The spin polarization ratio in Fe2TiGa and Fe2TiIn is also quite high. The calculated total moment for Fe2TiAs and Fe2TiSb is 1 μB, which is mainly determined by the Fe partial moment. The half-metallicity of Fe2TiSb is stable under lattice distortion. The spin polarization of Fe2TiSb is found to be 100% for the lattice variation in a range of 5.6–6.1 Å, which is attractive in practical applications.  相似文献   

11.
The magnetic properties and electronic structure of Mn2NiZ (Z=In, Sn, Sb) have been studied. The magnetic structure of these alloys is mainly determined by the main-group element Z instead of the distance between the Mn atoms. Electronic structure calculations suggest that Mn2NiIn and Mn2NiSn are both ferrimagnets with antiparallel alignment between the Mn moments. But this antiferromagnetic coupling is weakened by the increasing number of valence electrons of the Z atoms. When it comes to Mn2NiSb, a ferromagnetic coupling between the Mn atoms is observed. Mn2NiSn and Mn2NiSb have been synthesized successfully. Their Ms at 5 K agree well with the theoretical value.  相似文献   

12.
First-principles calculations have been performed to study the electronic structure and the ferromagnetic properties of the cyano-bridged bimetallic compound Mn2(H2O)5Mo(CN)7·4H2O (α phase).The calculations were based on density-functional theory and the full potential linearized augmented plane wave method (FP-LAPW). The calculated total energies revealed that the compound has a stable ferromagnetic (FM) ground state, which is in agreement with the experiments. The electronic structure of the compound has a half-metallic behavior. The calculated magnetic moment per molecule is about 15.000 μB, the magnetic moment are mainly from Mo and Mn atoms with d electronic configuration. It is also found that there exists ferromagnetic interaction between low-spin Mo2+ and high-spin Mn3+ ions through the Mo-C-N-Mn linear linkages.  相似文献   

13.
The structural, electronic and magnetic properties of Co-based Heusler compounds Co2YZ (Y = V, Cr; Z = Al, Ga) under pressure are studied using first principles density functional theory. The calculations are performed within generalized gradient approximation. The total magnetic moment decreases slightly on compression. Under application of external pressure, the valence band and conduction band are shifted downward which leads to the modification of electronic structure. There exists an indirect band gap along ГX for all the alloys studied. Co2CrAl shows half-metallic nature up to 85 GPa. After this pressure transition from true half-metallic behavior to nearly half-metallic behavior is observed and at 90 GPa it shows metallic behavior. Co2CrGa shows nearly half-metallic behavior at ambient pressure, but true half-metallic behavior is observed as pressure is increased to 100 GPa. For Co2VGa, true half-metallic to nearly half-metallic transition is observed at 40 GPa and around 100 GPa, Co2VGa shows metallic behavior. For Co2VAl, true half-metallic behavior is not observed at ambient as well as higher pressures. The half metal-to-metal transition in Co2VAl and Co2CrAl is accompanied by quenching of magnetic moment.  相似文献   

14.
Compared to half-metallic ferromagnets, half-metallic antiferromagnets (precisely called half-metallic fully compensated ferrimagnets) are more promising candidates for spintronic applications since their zero magnetization leads to lower stray fields and thus tiny energy losses. Using the first-principles calculations, we have systematically investigated the electronic and magnetic properties of the ordered Cr1 − xCaxSb alloy. It is found that Cr1 − xCaxSb with x=0.125, 0.25, 0.5 and 0.75 all are half-metals like zinc-blende CrSb and CaSb. Interestingly, Cr0.25Ca0.75Sb is a half-metallic antiferromagnet with complete spin polarization, and the half-metallic antiferromagnetism is robust against the lattice compression and expansion and the choice of electronic exchange and correlation functional.  相似文献   

15.
First-principles calculations based on the density functional theory are performed to study the structural properties, spin-polarized electronic band structures, density of states and magnetic properties of the zinc blende In1− x Mn x Sb (x = 0.125, 0.25, 0.50, 0.75, 1.0). The calculated lattice constants of In1− x Mn x Sb obey the Vegard’s law with a marginal upward bowing. With the increase of Mn concentration in In1− x Mn x Sb, a transition from the semi-metallic to the half-metallic behavior happens such that the majority-spin valence states crosses the Fermi level and the minority-spin states have a gap at the Fermi level. A large exchange splitting (∼ 4 eV) is observed between Mn 3d states of the majority-spins and the minority-spins. The total magnetic moment of In1− x Mn x Sb half-metallic ferromagnets per Mn atom basis is 4μ B. The total magnetic moment per Mn atom indicate that Mn atoms act as acceptors in InSb and contribute to holes in the lattice of InSb. Due to p-d hybridization, the free space charge of Mn reduces that results a loss in its magnetic moment. The loss in the magnetic moment of the Mn atoms is converted into a small local magnetic moments on the In and Sb sites.  相似文献   

16.
First-principles density-functional theory (DFT) calculations have been performed to study the magnetic properties of ZnO:Cr with and without vacancies. The results indicate that the doping of Cr in ZnO induces obvious spin polarization around the Fermi level and a total magnetic moment of 3.77μB. The ferromagnetism (FM) exchange interaction between Cr atoms is short-ranged and decreases with increasing Cr separation distance. It is suggested that the FM state is not stable with low concentration of Cr. The presence of O vacancies can make the half-metallic FM state of the system more stable, so that higher Curie temperature ferromagnetism may be expected. Nevertheless, Zn vacancies can result in the FM stability decreasing slightly. The calculated formation energy shows that VZn+CrZn complex forms spontaneously under O-rich conditions. However, under Zn-rich conditions, the complex of VO+CrZn forms more easily. Thus, ZnO doped with Cr may exhibit a concentration of vacancies that influence the magnetic properties.  相似文献   

17.
ABSTRACT

The inverse Heusler alloys such as Ti2CoSi, Mn2CoAl and Cr2ZnSi were studied in the framework of density functional theory using FP-LAPW linearised augmented plane wave method in order to determine the different physical properties such as structural, electronic, magnetic and thermoelectric. The generalised gradient approximation (GGA) was used to treat the exchange–correlation energy and the Beck-Johnson (mBJ) approach was used to calculate the electronic properties. In all studied compounds, the stable type Hg2CuTi was energetically more favourable than Cu2MnAl type structure. The results show that two compounds (Ti2CoSi and Mn2CoAl) are both ferromagnetic (FM) while Cr2ZnSi is antiferromagnetic (AFM). The compounds Ti2CoSi and Mn2CoAl have a total magnetic moment of 3 and 2?μB, respectively, whereas the Cr2ZnSi alloy has a total magnetic moment equals zero. The Ti2CoSi, Mn2CoAl and Cr2ZnSi compounds exhibit half-metallic (HM) character with 100% spin polarisation at the Fermi level. Finally, the semi-classical Boltzmann theory implicit in the BoltzTraP code was used to calculate the electronic transport coefficients such as thermal and electrical conductivity, the Seebeck coefficient and the factor of merit.  相似文献   

18.
Nano-structured TiO2/carbon clusters/Cr2O3 composite material has been successfully obtained by the microwave treatment of a TiO(acac)/Cr(acac)3/epoxy resin complex. The compositions of the composite materials were determined using ICP, elemental analysis and surface characterization by SEM-EDX, TEM and XRD. ESR spectral examinations suggest the possibility of an electron transfer in the process of TiO2 → carbon clusters → Cr2O3 with an oxidation site at TiO2 particles and a reduction site at Cr2O3 particles. The preliminary experimental results show that the calcined materials could decompose methylene blue under visible-light irradiation.  相似文献   

19.
The electronic structure and magnetic properties of Ni2MnB upon pressure up to 20 GPa have been studied by using the density functional theory (DFT) method. The results indicate that ferromagnetic ordered Ni2MnB in L21 structure is more stable than the nonmagnetic one. The magnetic moments of Ni and Mn atoms as well as the total magnetic moment of Ni2MnB are found to decrease weakly with increasing pressure. The pressure derivative of the total magnetic moment is −3.07×10−3 GPa−1. The equilibrium bulk modulus and its derivative from the Murnaghan equation of state (EOS) are B0=247.7 GPa, B′=4.98.  相似文献   

20.
The first-principles full-potential linearized augmented plane-wave method within the generalized gradient approximation for the exchange-correlation functional is used to investigate the structural, electronic and magnetic properties of Zn1−xCrxSe (x=0.25, 0.5, 0.75 and 1.0). We find that Zn1−xCrxSe exhibits a half-metallic characteristic, and the ferromagnetic state is more favourable in energy than the antiferromagnetic state. The calculated total magnetic moment of Zn1−xCrxSe per Cr atom is 4.00 μB, which mainly arises from the Cr atom with a little contribution from the Se and Zn atoms. Furthermore, the robustness of half-metallicity with respect to the variation of lattice constants of Zn1−xCrxSe is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号