首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The perovskite solid solutions of the type La2xSr2−2xCo2xRu2−2xO6 with 0.25≤x≤0.75 have been investigated for their structural, magnetic and transport properties. All the compounds crystallize in double perovskite structure. The magnetization measurements indicate a complex magnetic ground state with strong competition between ferromagnetic and antiferromagnetic interactions. Resistivity of the compounds is in confirmation with hopping conduction behaviour though differences are noted especially for x=0.4 and 0.6. Most importantly, low field (50 Oe) magnetization measurements display negative magnetization during the zero field cooled cycle. X-ray photoelectron spectroscopy measurements indicate the presence of Co2+/Co3+ and Ru4+/Ru5+ redox couples in all compositions except x=0.5. Presence of magnetic ions like Ru4+ and Co3+ gives rise to additional ferromagnetic (Ru-rich) and antiferromagnetic sublattices and also explains the observed negative magnetization.  相似文献   

2.
Ge1−xMnx (x = 0, 0.013, 0.0226, 0.0339, 0.0565, 0.0678, 0.0904, 0.113) films prepared by magnetron sputtering at 773 K had a Ge cubic structure except for x = 0.1130. Co ion implantation into these films can effectively prevent the formation of a second phase. Both single-doped and co-doped samples were ferromagnetic at room temperature. The d-d exchange interaction between the interstitial Mn (MnT) and the substituted Mn (MnGe) resulted in ferromagnetism in the sputtered films. Since Co ion implantation destroyed the MnT-MnGe-MnT complex, the saturated magnetization decreased. Hall measurements revealed that the Co ion implanted films were n-type semiconductors, and the anomalous Hall Effect (AHE) suggested the ferromagnetism was carrier-mediated in the implanted films.  相似文献   

3.
Magnetization and susceptibility were investigated as a function of temperature and magnetic field in polycrystalline Mn[Cr0.5Ga1.5]S4 spinel. The dc susceptibility measurements at 919 Oe showed a disordered ferrimagnetic behaviour with a Curie-Weiss temperature θCW=−55 K and an effective magnetic moment of 5.96 μB close to the spin-only value of 6.52 μB for Cr3+ and Mn2+ ions in the 3d3 and 3d5 configurations, respectively. The magnetization measured at 100 Oe revealed the multiple magnetic transitions with a sharp maximum at the Néel temperature TN=3.9 K, a minimum at the Yafet-Kittel temperature TYK=5 K, a broad maximum at the freezing temperature Tf=7.9 K, and an inflection point at the Curie temperature TC=48 K indicating a transition to paramagnetic phase. A large splitting between the zero-field-cooled (ZFC) and field-cooled (FC) magnetizations at a temperature smaller than TC suggests the presence of spin-glass-like behaviour. This behaviour is considered in a framework of competing interactions between the antiferromagnetic ordering of the A(Mn) sublattice and the ferromagnetic ordering of the B(Cr) sublattice.  相似文献   

4.
We have studied the effect of Fe substitution on magnetic and magnetocaloric properties in La0.7Sr0.3Mn1−xFexO3 (x=0.05, 0.07, 0.10, 0.15, and 0.20) over a wide temperature range (T=10-400 K). It is shown that substitution by Fe gradually decreases the ferromagnetic Curie temperature (TC) and saturation magnetization up to x=0.15 but a dramatic change occurs for x=0.2. The x=0.2 sample can be considered as a phase separated compound in which both short-range ordered ferromagnetic and antiferromagnetic phases coexist. The magnetic entropy change (−ΔSm) was estimated from isothermal magnetization curves and it decreases with increase of Fe content from 4.4 J kg−1 K−1 at 343 K (x=0.05) to 1.3 J kg−1 K−1 at 105 K (x=0.2), under ΔH=5 T. The La0.7Sr0.3Mn0.93Fe0.07O3 sample shows negligible hysteresis loss, operating temperature range over 60 K around room temperature with refrigerant capacity of 225 J kg−1, and magnetic entropy of 4 J kg−1 K−1 which will be an interesting compound for application in room temperature refrigeration.  相似文献   

5.
We have investigated the magnetic and electrical transport properties of Si1−xMnx single crystals grown by the vertical Bridgman method. The alloys with Mn concentrations up to x=0.64 have weak ferromagnetic ordering around TC∼30 K. However, Si0.25Mn0.75 alloys show weak ferromagnetic ordering at 70 K and antiferromagnetic ordering at 104 K, which is confirmed by magnetization and electrical transport studies.  相似文献   

6.
The magnetic behavior of the diluted magnetic semiconductor Cd0.42Mn0.58In2S4 has been study by dc magnetization and ac susceptibility experiments. Zero field cooled and field cooled measurements reveal irreversibility below Tirr=2.60±0.15 K. Ac susceptibility data, performed as a function of the temperature and the frequency, confirm the spin-glass like behavior of the material with Tf=2.75±0.15 K. High temperature susceptibility data follow a typical Curie-Weiss law with θ=−74±1 K which suggests predominant antiferromagnetic interactions. The randomness of the magnetic ions, necessary to explain the magnetic behavior of the material, has been determined by X-ray powder diffraction experiments.  相似文献   

7.
X-ray powder diffraction and magnetization measurements have been carried out on Rh2Mn1+xSn1−x (0≤x≤0.3) alloys. The alloys, which crystallize in the L21 structure, were found to exhibit ferromagnetic behavior. The lattice constant a at room temperature decreases with increasing x, whereas the Curie temperature TC decreases linearly. At 5 K the magnetic moment per formula unit first increases with increasing x and then saturates for x≥0.2. The experimental results are discussed in terms of the influence of the Mn-Mn exchange interactions between the Mn atoms on the Sn and Mn sites.  相似文献   

8.
The magnetic properties and the Griffiths singularity were investigated in Mn-site doped manganites of La0.45Sr0.55Mn1−xCoxO3 (x=0, 0.05, 0.10 and 0.15) in this work. The parent sample La0.45Sr0.55MnO3 undergoes a paramagnetic-ferromagnetic transition at TC=290 K and a ferromagnetic-antiferromagnetic transition at TN=191 K. The doping of Co ions enhances the ferromagnetism and suppresses the antiferromagnetism. The enhanced ferromagnetism results from the fact that the Co doping enhances the Mn3+-Mn4+ double-exchange interaction and induces the Co2+-Mn4+ ferromagnetic superexchange interaction. Detailed investigation on the magnetic behavior above TC exhibits that the Griffiths singularity takes place in this series of Mn-site doped compounds. The correlated disorder induced by the Co ionic doping, together with the phase competition from the ferromagnetic and the antiferromagnetic interactions among Mn ions, is responsible for the Griffiths singularity.  相似文献   

9.
We have measured magnetization curves and powder neutron diffraction of double-layered Ruddlesden-Popper type ruthenate Sr3−xCaxRu2O7 (x=1.5, 2.0 and 3.0). The field dependence of the magnetization revealed that the transition field of metamagnetic transition along the b-axis shifted to lower fields and that the transition became broad with increasing Sr content. The slope of the magnetization curve also increased with increasing Sr content below the metamagnetic transition. These results indicate that an itinerant component is partly introduced by the Sr substitution. From the magnetic reflection, on cooling below TN, an additional reflection was observed at (0 0 1) for each x, and the amplitude increased with decreasing temperature. The observed diffraction patterns are very similar to those of Ca3Ru2O7. We conclude that the magnetic structure of the antiferromagnetic ordered phase is basically the same structure with that of Ca3Ru2O7.  相似文献   

10.
In this paper, we have investigated Mn-doped SnO2 powder samples prepared by solid-state reaction method. X-ray diffraction showed a single phase polycrystalline rutile structure. The atomic content of Mn ranged from ∼0.8 to 5 at%. Room temperature M-H loops showed a ferromagnetic behavior for all samples. The ferromagnetic Sn0.987Mn0.013O2 showed a coercivity Hc=545 Oe, which is among the highest reported for dilute magnetic semiconductors. The magnetic moment per Mn atom was estimated to be about 2.54 μB of the Sn0.9921Mn0.0079O2 sample. The average magnetic moment per Mn atom sharply decreases with increasing Mn content, while the effective fraction of the Mn ions contributing to the magnetization decreases. The magnetic properties of the Sn1−xMnxO2 are discussed based on the competition between the antiferromagnetic superexchange coupling and the F-center exchange coupling mechanism, in which both oxygen vacancies and magnetic ions are involved.  相似文献   

11.
The magneto-transport properties of ferromagnetic Ga1−xMnxAs epilayers with Mn mole fractions in the range of x≈2.2-4.4% were investigated through Hall effect measurements. The magnetic field-dependent Hall mobility for a metallic sample with x≈2.2% in the temperature range of T=0-300 K was analyzed by magnetic field-dependent mobility model including an activation energy of Mn acceptor level. This model provides outstanding fits to the measured data up to T=300 K. It was found that the acceptor levels with activation energies of 112 meV at B=0 Oe decreased to 99 meV at B=5 kOe in the ferromagnetic region. The decrease in acceptor activation energy was due to the spin splitting of the Mn acceptor level in the ferromagnetic region, and was responsible for increase in carrier concentration.  相似文献   

12.
We report results on the structural and magnetic properties of the CoxNi1−xTa2O6 series of compounds by X-ray powder diffraction, magnetic susceptibility and magnetization measurements. X-ray refinements carried out by the Rietveld method show that these compounds crystallize in a P42/mnm tetragonal structure. Magnetic susceptibility curves show a broadened maximum witnessing that these compounds exhibit two-dimensional antiferromagnetic behaviors. All the CoxNi1−xTa2O6 compounds order below 10 K and present a large ion anisotropy. The magnetic properties have been determined in both the paramagnetic and antiferromagnetic state. In the hypothesis of two dimensional AF ordering, the near neighbor exchange constants (J1) and the next near neighbor exchange constants for two different paths (J2 and J'2) were determined. The composition dependence of the magnetic properties including ordering temperature, exchange constants and anisotropy factors are discussed. The drastic reduction of the ordering temperature for x=0.20 for CoxNi1−xTa2O6, suggest the hypothesis of a peculiar magnetic behavior for this composition.  相似文献   

13.
Magnetic susceptibility χ measurements in the range from 2 to 300 K were carried out on samples of the Cu2FeSnSe4 and Cu2MnSnSe4 compounds. It was found that Cu2FeSnSe4 was antiferromagnetic showing ideal Curie-Weiss behavior with a Néel temperature TN of about 19 K and Curie-Weiss temperature θ=−200 K, while for Cu2MnSnSe4 the behavior was spin-glass with a freezing temperature Tf of about 22 K and Curie-Weiss temperature θ=−25 K. The spin-glass order parameter q(T), determined from the susceptibility data, was found to be in agreement with the prediction of conventional spin-glass theory.  相似文献   

14.
The magnetic and electrical properties of the Al-doped polycrystalline spinels ZnxCryAlzSe4 (0.13≤z≤0.55) with the antiferromagnetic (AFM) order and semiconducting behavior were investigated. A complex antiferromagnetic structure below a Néel temperature TN≈23 K for the samples with z up to 0.4 contrasting with the strong ferromagnetic (FM) interactions evidenced by a large positive Curie-Weiss temperature θCW decreasing from 62.2 K for z=0.13 to 37.5 K for z=0.55 was observed. Detailed investigations revealed a divergence between the zero-field-cooling (ZFC) and field-cooling (FC) susceptibilities at temperature less than TN suggesting bond frustration due to competing ferromagnetic and antiferromagnetic exchange interactions in the compositional range 0.13≤z≤0.4. Meanwhile, for z=0.55 a spin-glass-like behavior of cluster type with randomly oriented magnetic moments is observed as the ZFC-FC splitting goes up to the freezing temperature Tf=11.5 K and the critical fields connected both with a transformation of the antiferromagnetic spin spiral via conical magnetic structure into ferromagnetic phase disappear.  相似文献   

15.
We synthesized the Mn-doped Mg(In2−xMnx)O4 oxides with 0.03?x?0.55 using a solid-state reaction method. The X-ray diffraction patterns of the samples were in a good agreement with that of a distorted orthorhombic spinel phase. Their lattice parameters and unit-cell volumes decrease with x due to the substitution of the smaller Mn3+ ions to the larger In3+ ions. The undoped MgIn2O4 oxide presents diamagnetic signals for 5 K?T?300 K. The M(H) at T=300 K reveals a fairly negative-sloped linear relationship. Neither magnetic hysteresis nor saturation behavior was observed in this parent sample. For the Mn-doped samples, however, positive magnetization were observed between 5 and 300 K even if the x value is as low as 0.03. The mass susceptibility enhances with Mn content and it reaches the highest value of 1.4×10−3 emu/g Oe (at T=300 K) at x=0.45. Furthermore, the Mn-doped oxides with x=0.06 and 0.2, respectively, exhibit nonlinear magnetization curves and small hysteretic loops in low magnetic fields. Susceptibilities of the Mn-doped samples are much higher than those of MnO2, Mn2O3 oxides, and Mn metals. These results show that the oxides have potential to be magnetic semiconductors.  相似文献   

16.
The structural and magnetic properties of epitaxial In1−xMnxAs1−yPy quaternary layers with Mn content ranging from 0.01 to 0.04 and phosphorous content ranging from 0.11 to 0.21 were studied. X-ray diffraction indicated that the films were two phase consisting of an InMnAsP solid solution and hexagonal MnAs nanoprecipitates. Addition of phosphorus promoted precipitate formation. Films were ferromagnetic showing hysteretic behavior in the field dependence of magnetization at 5 and 298 K. From field-cooled magnetization measurements ferromagnetic transitions were observed at 280 and 325 K. The zero field-cooled magnetization versus temperature measurements showed irreversibility for T<300 K that was attributed to the presence of MnAs nanoprecipitates. The calculated coercivity using the Neel model was 1380 G compared to the experimental value of 380 G at 5 K. The difference was attributed to a strong inter-cluster exchange that stabilizes the ferromagnetic state.  相似文献   

17.
Nanoscale Cu1−xMnxO powder is prepared by using the combustion synthesis technique with two different fuels. The structural properties of the powder are determined using Rietveld refinement of X-ray diffraction data, high-resolution transmission electron microscopy, and Fourier transform infrared spectroscopy, while its magnetic properties are analyzed by means of hysteresis loop and temperature dependence of magnetization. The results show that (1) the Cu1−xMnxO nanocrystal is of monoclinic CuO structure, with grain size of 10-30 nm varying with the type of fuel, the nitrate/fuel ratio (N/F), and the Mn concentration, the doping of Mn has a little influence on the lattice parameters; (2) when the Mn concentration is higher than 7%, a small amount of impurity phase of CuMn2O4 appears and annihilates the potential cation vacancies; (3) all of the samples with x≥5% exhibit low-temperature ferromagnetism with the Curie temperature of ∼90 K, which increases slightly by raising the Mn concentration; (4) the paramagnetic moment per Mn ion is around 2-4 bohr magneton above the Curie temperature, which decreases with increasing Mn concentration, implying that the nearest Mn ions are antiferromagnetically coupled and the ferromagnetic order could originate from the super-exchange of next nearest Mn ions along the [1 0 1?] direction.  相似文献   

18.
Mn1−xFexIn2Se4 compounds (x=0.1; x=0.7) were grown by the chemical vapor transport method. X-ray diffraction analysis data show that these compositions crystallize as different polytypes that belong to the hexagonal structure. The crystal symmetry of the sample with x=0.1 belongs to the space group Rm and for the sample with x=0.7 the space group is P63mc.The magnetic behavior of both samples has been investigated in the temperature range between 5 and 300 K. Spin-glass-like behavior below the freezing temperature Tf=9 K has been found for the sample with x=0.7. The sample with Fe content x=0.1 behaves as a paramagnet down to the lowest experimental measured temperature. High-temperature susceptibility data follow the Curie-Weiss law with a negative paramagnetic temperature indicating predominant antiferromagnetic interactions.Optical studies reveal that both samples (x=0.1; 0.7) are direct band gap semiconductors. The temperature dependence of the energy gap fits Varshni relation quite well.  相似文献   

19.
A summary of the results of ac susceptibility and isothermal magnetization measurements on polycrystalline samples of Ce2Fe17−xSix with nominal composition of x=0.0, 0.1, 0.2 and 1.0 is presented. These data reveal that the substitution of small amounts of Si for Fe produce a significant increase in temperature at which ferromagnetism appears, to the extent that, at x=1, characteristics of the anti ferromagnetic to paramagnetic transition (at temperature TN) have disappeared completely. The nature of the various magnetic phase transitions — identified through the use of Arrott plots — and the accompanying magnetic entropy change, ΔSm, are both affected significantly by small amounts of Si substitution. In particular, while the peak entropy change is modest (occurring at x=0.1), the temperature interval over which a substantial entropy change occures is significant, approaching 150 K, an important criterion for improving the overall effectiveness of such materials for magnetic refrigeration.  相似文献   

20.
We report on the structural and magnetic properties of nanoparticles of MnxCo1−xFe2O4 (x=0.1, 0.5) ferrites produced by the glycothermal reaction. From the analysis of XRD spectra and TEM micrographs, particle sizes of the samples have been found to be about 8 nm (for x=0.1) and 13 nm (for x=0.5). The samples were characterized by DC magnetization in the temperature range 5-380 K and in magnetic fields of up to 40 kOe using a SQUID magnetometer. Mössbauer spectroscopy results show that the sample with higher Mn content has enhanced hyperfine fields after thermal annealing at 700 °C. There is a corresponding small reduction in hyperfine fields for the sample with lower Mn content. The variations of saturation magnetization, remnant magnetization and coercive fields as functions of temperature are also presented. Our results show evidence of superparamagnetic behaviour associated with the nanosized particles. Particle sizes appear to be critical in explaining the observed properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号