首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
Nanoparticle-sized Co0.2Ni0.3Zn0.5Fe2O4 was prepared using mechanical alloying and sintering. The starting raw materials were milled in air and subsequently sintered at various temperatures from 600 to 1300 °C. The effects of sintering temperature on physical, magnetic and electrical characteristics were studied. The complex permittivity and permeability were investigated in the frequency range 10 MHz to 1.0 GHz. The results show that single phase Co0.2Ni0.3Zn0.5Fe2O4 could not be formed during milling alone and therefore requires sintering. The crystallization of the ferrite sample increases with increasing sintering temperature; which decrease the porosity and increase the density, crystallite size and the shrinkage of the material. The maximum magnetization value of 83.1 emu/g was obtained for a sample sintered at 1200 °C, while both the retentivity and the coercivity decrease with increasing the sintering temperature. The permeability values vary with both the sintering temperature and the frequency and the absolute value of the permeability decreased after the natural resonance frequency. The real part of the permittivity was constant within the measured frequency, while the loss tangent values decreased gradually with increasing frequency.  相似文献   

2.
Y-type polycrystalline hexagonal ferrites Ba2Co2−xyZnxCuyFe12O22 with 0≤x≤2 and 0≤y≤0.8 were prepared by the mixed-oxide route. Single phase Y-type ferrite powders were obtained after calcinations at 1000 °C. Samples sintered at 1200 °C show a permeability that increases with the substitution of Zn for Co and display maximum permeability of μ′=35 at 1 MHz for x=1.6 and y=0.4. A resonance frequency fr=500 MHz is observed for Zn-rich ferrites with y=0 and 0.4. The saturation magnetization increases with substitution of Zn for Co. Addition of Bi2O3 shifts the temperature of maximum shrinkage down to T≤950 °C. Moreover, an increase of the Cu-concentration further lowers the sintering temperature to T≤900 °C, enabling co-firing of the ferrites with Ag metallization for multilayer technologies. However, low-temperature firing reduces the permeability to μ′=10 and the resonance frequency is shifted to 1 GHz. Thus substituted hexagonal Y-type ferrites can be used as soft magnetic materials for multilayer inductors for high frequency applications.  相似文献   

3.
The aim of this work is to lower the sintered temperature of M-type barium ferrite (BaM) by BaCu(B2O5) (BCB) additives. The effects of BCB additives on the sintering behavior, structure and magnetic properties of BaM were also discussed. It was found that the sintered density, saturation magnetization and initial permeability of BaM are modified obviously as small amount of BCB (1-4 wt%) is added. Especially, when BaM with 3 wt% BCB was sintered at 900 °C, the single-phase BaM was obtained and showed excellent properties with sintered density of 4.88 g/cm3, saturation magnetization of 61.4 emu/g and initial permeability of 3.15. In addition, the SEM result revealed that the sample can be co-fired well with the Ag electrode at 900 °C. The reason for this was attributed to be the formation of the BCB liquid phase. It suggests that this M-type barium ferrite can be used as LTCC substrate for millimeter wave circulator, filter and other magnetic microwave devices.  相似文献   

4.
Double perovskite Sr2FeMoO6 powders with small crystallite size have been synthesised with citrate-gel method. The starting solution pH was varied between 1.5 and 9.0 resulting in large differences in the phase composition and ordering of B/B sites. The samples prepared at 975 °C had crystallite sizes under 40 nm whereas crystallite sizes of the samples prepared at 1050 °C were between 78 and 239 nm. The XRD patterns were refined with spacegroup I 4/m, which gave good results for both batches, although clearly better results were obtained with monoclinic P 21/n spacegroup for the 975 °C batch. The ordering and the saturation magnetization agreed well with each other after treatment at 1050 °C, but the samples prepared at 975 °C had a strongly reduced saturation magnetization from that given by the ordering.  相似文献   

5.
Sintering temperature and particle size dependent structural and magnetic properties of lithium ferrite (Li0.5Fe2.5O4) were synthesized and sintered at four different temperatures ranging from 875 to 1475 K in the step of 200 K. The sample sintered at 875 K was also treated for four different sintering times ranging from 4 to 16 h. Samples sintered at 1475 K have the cubic spinel structure with a small amount of α-Fe2O3 (hematite) and γ-Fe2O3 (maghemite). The samples sintered at≤1275 K do not show hematite and maghemite phases and the crystals form the single phase spinel structure with the cation ordering on octahedral sites. Particle size of lithium ferrite is in the range of 13-45 nm, and is depend on the sintering temperature and sintering time. The saturation magnetization increased from 45 to 76 emu/g and coercivity decreases from 151 to 139 Oe with an increase in particle size. Magnetization temperature curve recorded in ZFC and FC modes in an external magnetic field of 100 Oe. Typical blocking effects are observed below about 244 K. The dielectric constant increases with an increase in sintering temperature and particle size.  相似文献   

6.
The effect of post sintering annealing on the dielectric response of (Pb1−xBax)(Yb0.5Ta0.5)O3 ceramics in the diffuse phase transition range (x=0.2) has been investigated. The samples are prepared by conventional solid-state reaction method. The samples are sintered at 1300 °C for 2 h and annealed at different temperatures (800, 900 and 1000 °C) for 8 h and at 800 °C for different time durations (8, 12 and 24 h). A significant change in the dielectric response has been observed in all the samples. The dielectric constant increases remarkably and the dielectric loss tangent decreases. The dielectric peaks of the annealed samples are observed to be more diffused with noticeable frequency dispersion compared to the as sintered sample.  相似文献   

7.
A series of polycrystalline ferrites having nominal chemical composition Co0.50−xMnxZn0.5Fe2O4 (0<x<0.4) have been synthesized by the solid-state reaction technique. The XRD analysis confirms single phase cubic spinel structure for all compositions. Lattice constant increases from 0.84195 to 0.84429 nm with the increasing Mn content and obeys Vegard's law. The average grain size increases by increasing both Mn content and sintering temperatures. Room temperature saturation magnetization increases for x=0.1 and decreases for increasing Mn content. The coercivity decreases with increasing Mn content due to the decrease of anisotropy constant. A reentrant spin glass behavior of these samples is observed from the zero field cooled magnetization measurements. The real part of the initial permeability increases by increasing both Mn content and sintering temperatures. This is due to the homogeneous grain growth and densification of the ferrites. The highest initial permeability 137 is observed for x=0.4 sintered at 1573 K on the other hand, the highest relative quality factor (2522) is obtained for the sample Co0.2Mn0.3Zn0.5Fe2O4 sintered at 1523 K. The Mn substituted Co0.50−xMnxZn0.5Fe2O4 ferrites showed improved magnetic properties.  相似文献   

8.
La1−xAgxMnO3 samples were synthesized by standard sol-gel method with Ag concentrations of x=0.05 and 0.25. The samples from each concentration were pressed and sintered at 1000, 1200 and 1400 °C for 24 h in air for a systematic study. They were examined structurally by Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM) with Energy Dispersive Spectroscopy (EDS) and X-ray Diffraction (XRD) and magnetically by Magnetic Properties Measurements System (MPMS). AFM and SEM analyses show that surface morphology changes with Ag concentration and sintering temperature (TS). It was observed that high temperature sintering leads Ag to leave material as determined from EDS analyses. XRD spectra exhibited that the crystal structure changes with Ag concentration while showing pronounced change with the sintering temperature. From the magnetic measurements, the Curie temperatures (TC) and the isothermal magnetic entropy changes (−ΔSM) were calculated. It was observed that TC increases with Ag concentration and decreases with TS. The maximum −ΔSM was calculated to be 7.2 J/kg K under the field change of 5 T for the sample sintered at 1000 °C with x=0.25.  相似文献   

9.
We report a new synthesis route for preparation of single-domain barium hexaferrite (BaFe12O19) particles with high saturation magnetization. Nitric acid, known as a good oxidizer, is used as a mixing medium during the synthesis. It is shown that formation of BaFe12O19 phase starts at 800 °C, which is considerably lower than the typical ceramic process and develops with increasing temperature. Both magnetization measurements and scanning electron microscope micrographs reveal that the particles are single domain up to 1000 °C at which the highest coercive field of 3.6 kOe was obtained. The best saturation magnetization of ≈60 emu/g at 1.5 T was achieved by sintering for 2 h at 1200 °C. Annealing at temperatures higher than 1000 °C increased the saturation magnetization, on the other hand, decreased the coercive field which was due to the formation of multi-domain particles with larger grain sizes. It is shown that the best sintering to obtain fine particles of BaFe12O19 occurs at temperatures 900-1000 °C. Finally, magnetic interactions between the hard BaFe12O19 phase and impurity phases were investigated using the Stoner-Wohlfarth model.  相似文献   

10.
Herein, a discussion of the effect of deposition temperature on the magnetic behavior of Ni0.5Zn0.5Fe2O4 thin films. The thin films were grown by r.f. sputtering technique on (1 0 0) MgO single-crystal substrates at deposition temperatures ranging between 400 and 800 °C. The grain boundary microstructure was analyzed via atomic force microscopy (AFM). AFM images show that grain size (φ∼70-112 nm) increases with increasing deposition temperature, according to a diffusion growth model. From magneto-optical Kerr effect (MOKE) measurements at room temperature, coercive fields, Hc, between 37and 131 Oe were measured. The coercive field, Hc, as a function of grain size, reaches a maximum value of 131 Oe for φ ∼93 nm, while the relative saturation magnetization exhibits a minimum value at this grain size. The behaviors observed were interpreted as the existence of a critical size for the transition from single- to multi-domain regime. The saturation magnetization (21 emu/g<Ms<60 emu/g) was employed to quantify the critical magnetic intergranular correlation length (Lc≈166 nm), where a single-grain to coupled-grain behavior transition occurs. Experimental hysteresis loops were fitted by the Jiles-Atherton model (JAM). The value of the k-parameter of the JAM fitted by means of this model (k/μo∼50 A m2) was correlated to the domain size from the behavior of k, we observed a maximum in the density of defects for the sample with φ∼93 nm.  相似文献   

11.
Structural, AC and DC magnetic properties of polycrystalline Zn1−xCoxFe2O4 (x=0.2, 0.4) samples sintered at various temperatures (1100-1300 °C), and various dwell times (0.2-15 h) have been investigated thoroughly. The bulk density of the Zn0.60Co0.40Fe2O4 samples increases as the sintering temperature (Ts) increases from 1100 to 1250 °C, and above 1250 °C the bulk density decreases slightly. The Zn0.80Co0.20Fe2O4 samples show similar behavior of changes to that of Zn0.60Co0.40Fe2O4 samples except that the bulk density is found to be highest at 1200 °C. The DC magnetization as a function of temperature curves show that the Zn0.60Co0.40Fe2O4 sample is ferrimagnetic at room temperature while the Zn0.80Co0.20Fe2O4 sample is paramagnetic at room temperature. The Tc of Zn0.80Co0.20Fe2O4 sample is found to be 170 K from DC magnetization measurement. Separate measurement (AC magnetization), initial permeability as a function of temperature shows that the Tc of the Zn0.60Co0.40Fe2O4 sample is 353 K. Slight variation of Tc is observed depending on sintering condition. The initial permeability for the Zn0.60Co0.40Fe2O4 composition sintered at 1250 °C is found to be maximum.  相似文献   

12.
Structural and magnetic properties of Cu substituted Ni0.50−xCuxZn0.50Fe2O4 ferrites (where x=0.0-0.25) prepared by an auto combustion method have been investigated. The X-ray diffraction patterns of these compositions confirmed the formation of the single phase spinel structure. The lattice parameter increases with the increase in Cu2+ content obeying Vegard's law. The particle size of the starting powder compositions varied from 22 to 72 nm. The theoretical density increases with increase in copper content whereas the Néel temperature decreases. The bulk density, grain size and permeability increases up to a certain level of Cu2+ substitution, beyond that all these properties decrease with increase in Cu2+ content. The bulk density increases with increase in sintering temperatures up to 1250 °C for the parent composition, while for substituted compositions it increases up to 1200 °C. Due to substitution of Cu2+, the real part of the initial permeability increases from 97 to ∼390 for the sample sintered at 1100 °C and from 450 to 920 for the sample sintered at 1300 °C. The ferrites with higher initial permeability have a relatively lower resonance frequency, which obey Snoek's law. The initial permeability strongly depends on average grain size and intragranular porosity. The saturation magnetization, Ms, and the number of Bohr magneton, n(μB), decreases up to x=0.15 due to the reduction of the A-B interaction in the AB2O4 spinel type ferrites. Beyond that value of x, the Ms and the n(μB) values are enhanced. The substitution of Cu2+ influences the magnetic parameters due to modification of the cation distribution.  相似文献   

13.
In this study, effect of lanthanum substitution on the phase composition, lattice parameters and magnetic properties of barium hexaferrite has been studied in samples synthesized in ammonium nitrate melt. Samples, prepared with different lanthanum amount and having various initial Fe/(Ba+La) ratios in between 12 and 2 {(Ba1−xLaxn Fe2O3, where 0≤x≤1 and 1≤n≤6)}, are sintered at temperatures from 800 to 1200 °C. The lattice parameters, both a and c, decreases with increasing La amount which results in a decrease of the unit cell volume. The scanning electron microscope micrographs show that the pure and La-substituted sample with x=0.3, both calcinated at 1000 °C, have grain sizes smaller than 1 μm. The coercivities of the La-substituted samples increase with increasing La amount and reaches to a maximum value of 5.73 kOe, when x=0.3. Sintering at higher temperatures (above 1000 °C) decreases the coercivity, resembling a transition from single to multi-domain behavior of the particles, while saturation magnetization of the samples continues to increase due to the increasing grain size. Magnetization measurements of the samples prepared with different Fe/(Ba+La) molar ratios, n's, revealed that the specific saturation magnetization slightly increases with decreasing n, while coercivities fluctuates around 5.5 kOe. However, a sharp increase in the saturation magnetization has been observed in the sample having n=1 and washed in HCl. It was measured as 59.2 emu/g at 15 kOe, which is higher than that of the pure sample (57.5 emu/g). Thus, the magnetic parameters are optimized in the sample Ba0.7La0.3Fe12O19 so as to maximize both coercivity and specific saturation magnetization in the HCl-washed sample synthesized by starting with an unusually low Fe/(Ba+La) molar ratio of 2 (or n=1).  相似文献   

14.
The combined influence of a two-step sintering (TSS) process and addition of V2O5 on the microstructure and magnetic properties of NiZn ferrite was investigated. As comparison, samples prepared by the conventional single-step sintering (SSS) procedure were also studied. It was found that with 0.3 wt% V2O5 additive, the sample sintered by the two-step sintering process at a high temperature of 1250 °C for 30 min and a lower temperature of 1180 °C for 3 h exhibited more homogeneous microstructure and higher permeability with a high Q-factor. The results showed that the TSS method with suitable additive brought positive improvement of the microstructure and magnetic properties of NiZn ferrite.  相似文献   

15.
The structural and magnetic properties of Mn substituted Ni0.50−xMnxZn0.50Fe2O4 (where x=0.00, 0.10 and 0.20) sintered at various temperatures have been investigated thoroughly. The lattice parameter, average grain size and initial permeability increase with Mn substitution. Both bulk density and initial permeability increase with increasing sintering temperature from 1250 to 1300 °C and above 1300 °C they decrease. The Ni0.30Mn0.20Zn0.50Fe2O4 sintered at 1300 °C shows the highest relative quality factor and highest initial permeability among the studied samples. The initial permeability strongly depends on average grain size and intragranular porosity. From the magnetization as a function of applied magnetic field, M(H), it is clear that at room temperature all samples are in ferrimagnetic state. The number of Bohr magneton, n(μB), and Neel temperature, TN, decrease with increasing Mn substitution. It is found that Mn substitution in Ni0.50−xMnxZn0.50Fe2O4 (where x=0.20) decreases the Neel temperature by 25% but increases the initial permeability by 76%. Possible explanation for the observed characteristics of microstructure, initial permeability, DC magnetization and Neel temperature of the studied samples are discussed.  相似文献   

16.
Mixed manganese-zinc and nickel-zinc ferrites of composition Mn0.2Ni0.8−xZnxFe2O4 where x=0.4x=0.4, 0.5 and 0.6 have been synthesized by the citrate precursor technique. Decomposition of the precursor at temperatures as low as 500 °C gives the ferrite powder. The ferrites have been investigated for their electrical and magnetic properties such as saturation magnetization, initial permeability, Curie temperature, AC-resistivity and dielectric constant as a function of sintering temperature and zinc content. Structural properties such as lattice parameter, grain size and density are also studied. The mixed compositions exhibited higher saturation magnetizations at sintering temperatures as low as 1200 °C. While the Curie temperature decreased with zinc content, the permeability was found to increase. The AC-resistivity ranged from 105–107 Ω cm and decreased with zinc content and sintering temperature. The dielectric constants were lower than those normally reported for the Mn–Zn ferrites. Samples sintered at 1400 °C densified to about 94% of the theoretical density and the grain size was of the order of about 1.5 μm for the samples sintered at 1200 °C and increased subsequently with sintering temperature.  相似文献   

17.
The effects of 0.01 and 0.1 mol B2O3 addition to the microstructure and magnetic properties of a Ni–Zn ferrite composition expressed by a molecular formula of Ni0.4Zn0.6Fe2O4 were investigated. The toroid-shaped samples prepared by pressing the milled raw materials used in the preparation of the composition were sintered in the range of 1000–1300 °C. The addition of 0.01 mol B2O3 increased the grain growth and densification giving rise to reduced intergranular and intragranular porosity due to liquid-phase sintering. The sintered toroid sample at 1300 °C gave the optimum magnetic properties of Br=170 mT, Hc=0.025 kA/m and a high initial permeability value of μi=4000. The increment of the B2O3 content to 0.1 mol resulted in a pronounced grain growth and also gave rise to large porosity due to the evaporation of B2O3 at higher sintering temperatures. Hence, it resulted in an air-gap effect in the hysteresis curves of these samples.  相似文献   

18.
Co2Z hexaferrite Ba3Co2Fe24O41 was prepared by a mixed oxalate co-precipitation route and the standard ceramic technology. XRD studies show that at T<1300 °C different ferrite phases coexist with the M-type hexaferrite as majority phase between 1000 and 1100 °C and the Y-type ferrite at 1230 °C. The Z-type material has its stability interval between 1300 and 1350 °C. Both synthesis routes result in almost single-phase Z-type ferrites after calcination at 1330 °C, intermediate grinding and sintering at 1330 °C. The permeability of Co2Z-type ferrite of about μ=20 is stable up to several 100 MHz, with maximum losses μ′′ around 700 MHz. Addition of 3 wt% Bi2O3 as sintering aid shifts the temperature of maximum shrinkage down to 950 °C and enables sintering of Z-type ferrite powders at 950 °C. However, the permeability is reduced to μ=3. It is shown here for the first time that Co2Z ferrite is not stable under these conditions; partial thermal decomposition into other hexagonal ferrites is found by XRD studies. This is accompanied by a significant decrease of permeability. This shows that Co2Z hexagonal ferrite is not suitable for the fabrication of multilayer inductors for high-frequency applications via the low-temperature ceramic cofiring technology since the material is not compatible with the typical process cofiring temperature of 950 °C.  相似文献   

19.
NiFe2O4 nanoparticles were synthesized by the polyacrylamide gel method with acrylamide as the monomer and N,N′-methylenediacrylamide as lattice agent. The average crystallite sizes of the nickel ferrites annealed at 500, 600 and 800 °C are about 10, 30 and 50 nm, respectively. Ferrite-polystyrene composites were made by hot pressing, and microwave-absorbing properties of the composites with different contents of 35, 45, 55 and 65 wt% ferrite were investigated by testing complex permeability and complex permittivity in the X-band (8.2-12.4 GHz) frequency range. All the parameters, ε′, ε″, μ′ and μ″, increase with increasing ferrite content. The reflection losses were calculated based on a model of a single-layered plane wave absorber backed by a perfect conductor. The composite with 65 wt% ferrite content shows a minimum reflection loss of −13 dB at 11.5 GHz with a −10 dB bandwidth over the extended frequency range of 10.3-13 GHz for an absorber thickness of 2 mm.  相似文献   

20.
The composition effects on the dielectric and magnetic properties of NiCuZn-BaTiO3 composites fired at low temperature were investigated. The coexistence of perovskite BaTiO3 and spinel ferrite phases in the composites were observed; no significant chemical reactions occurred between BaTiO3 and NiCuZn ceramics during sintering. The nanosized BaTiO3 powders favored a decrease in grain size. The saturation magnetization, remanent magnetization and real permeability continuously decreased with increasing BaTiO3 content. And the real permittivity continuously increased with the BaTiO3 content. The Q-factor (quality factor) exhibited relatively high values with 20-30 wt% BaTiO3. All composite materials exhibited a low dielectric loss below 100 MHz. Synthetically considerations, the composites with 20-30 wt% BaTiO3 could obtain relatively high real permeability and real permittivity values, and the magnetic and dielectric losses were relatively low, so they were the best candidates to produce LC-integrated chip elements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号