首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
We investigated the magnetic behavior of nanosized zinc ferrite with the help of vibrating sample magnetometry and in-field Mössbauer spectroscopy. The nanoparticles of zinc ferrite with crystallite size ranging from 10 to 62 nm were synthesized by a nitrate method. The structure and phase were determined with the help of X-ray diffraction. Attributes of cation inversion were found with the calculated values of lattice parameter. The saturation magnetization decreases with the increase in crystallite size at room temperature, while these values are almost the same at 10 K for all the samples except the one with crystallite size of 10 nm. The thermal magnetization measurement shows a decrease in blocking temperature with increase in particle size for these samples. The synthesized samples exhibit the presence of antiferromagnetic ordering below the blocking temperature as investigated by in-field Mössbauer spectroscopy.  相似文献   

2.
Nanoparticles of Zn substituted lithium ferrite (Li0.32Zn0.36Fe2.32O4) have been prepared by a sol-gel method where the ultra-sonication technique has been adopted to reduce the agglomeration effect among the nanoparticles. The samples were heat-treated at three different temperatures and the formation of the nanocrystalline phase was confirmed by X-ray diffractograms (XRD). The average particle size of each sample has been estimated from the (311) peak of the XRD pattern using the Debye-Scherrer formula and the average sizes are in the range of 10-21 nm. The average particle size, crystallographic phase, etc. of some selected samples obtained from the high-resolution transmission electron microscopy are in agreement with those estimated from the XRD patterns. Static magnetic measurements viz., hysteresis loops, field cooled and zero field cooled magnetization versus temperature curves of some samples carried out by SQUID in the temperature range of 300 to 5 K clearly indicate the presence of superparamagnetic (SPM) relaxation of the nanoparticles in the samples. The maximum magnetization of the SPM sample annealed at 500 °C is quite high (68 Am2/Kg) and the hysteresis loops are almost square shaped with very low value of coercive field at room temperature (827.8 A/m). The particle size, magneto-crystalline anisotropy, etc. have been estimated from the detailed theoretical analysis of the static magnetic data. The dynamic magnetic behavior of the samples was also investigated by observing the ac hysteresis loops and magnetization versus field curves with different time windows at room temperatures. The different soft magnetic quantities viz., coercive field, magnetization, remanance, hysteresis losses, etc. were extracted from dynamic measurements. Dynamic measurements confirmed that the samples are in their mixed state of SPM and ordered ferrimagnetic particles, which is in good agreement with the results of static magnetic measurements. Mössbauer spectra of the samples recorded at room temperature (300 K) and at different temperatures down to 20 K confirmed the presence of the SPM relaxation of the nanoparticles of the samples.  相似文献   

3.
Nanostructured zinc ferrite of particle size 10 nm was synthesized by using the nitrates of appropriate cations and citric acid. This system was irradiated by 100 MeV oxygen beam with the fluence of 5×1013 ions/cm2. The particle size of the system remains almost same after the irradiation. We observe decrease in magnetization of the sample after irradiation at 300 and 10 K. The nature of the σ-H plot shows the presence of superparamgnetic domains at 300 K even after irradiation. The blocking temperature decreases from 276 to 63 K after irradiation. The Mössbauer spectroscopy supports the presence of superparamgnetic domains at 300 K in both the samples. The decrease in magnetization after irradiation is attributed to the decrease in cation inversion and increase in canting angle as observed from in-field Mössbauer spectroscopy.  相似文献   

4.
Nanocrystalline Fe particles were successfully prepared by the mechanical milling process using a high-energy planetary ball mill. The physical properties of the samples were investigated as a function of the milling time, t (in the 0-54 h range) by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX) and Mössbauer spectroscopy. After 54 h of milling, the lattice parameter increases from 0.28620 (3) nm for the starting Fe powder to 0.28667 (3) nm, the grain size decreases from 110 to 13 nm, while the strain increases from 0.09% to 0.7%. The powder particle morphology was observed by SEM at different stages of milling. For t less than 24 h, the Mössbauer spectra are characterized by one sextet corresponding to the crystalline bcc Fe phase, while for t greater than 24 h, the iron particles exhibit a two-component Mössbauer spectrum due to the presence of two phases: the crystallites bcc Fe phase and the grain-boundary region. The appearance and the increase in intensity of the second sextet with t may indicate that the interfacial region effect increases with milling time due to the grain size reduction and a probable disordered state of the grain boundaries.  相似文献   

5.
Iron layers (0.15-10 ML thick) deposited on Ag (1 0 0) substrates were investigated by conversion electron Mössbauer spectrometry over a broad temperature range. The layers were characterized by scanning tunneling microscopy. Different forms of the layers, depending on their thickness, were observed. Minimum roughness of the layers were found at 0.15 and 10 ML thickness values. The Mössbauer spectra showed systematic thickness dependence. At low thickness values, broad doublets were observed, while above 6 ML, magnetic split spectra appeared at room temperature. At low temperatures, magnetically split spectra appeared with parameter values characteristic of Fe-Ag and Fe-Fe atomic interactions. The hyperfine split spectra indicated magnetic anisotropy and an enhanced saturation hyperfine magnetic field of ?40 T. The latter value is the highest ever measured for iron in thin layers.  相似文献   

6.
NANOPERM-type FeMoCuB alloys are studied using magnetic and Mössbauer measurements in the as-prepared amorphous state. It is shown that the Fe76Mo8Cu1B15 (A) and Fe74Mo8Cu1B17 (B) alloys exhibit the magnetic dipole and electrical quadrupole interactions well detected in the room-temperature Mössbauer spectra. The thermomagnetic measurements above the room temperature indicate a vanishing of the magnetic interactions at approximately 310 K (A) and at 340 K (B), respectively. The low-temperature DC magnetic measurements show an anomaly around 200 K which is also a boundary at which zero-field Mössbauer measurements of both samples reflect the gradual “vanishing” of the electrical quadrupole interactions and appearance of another magnetically ordered component. The Mössbauer measurements in the field of 4 MA/m yield a survival of quadrupole and an enhancement of magnetic dipole interactions.  相似文献   

7.
The atomic interaction and magnetic properties of ultrathin Fe films grown on cleaved and polished MgO(1 0 0) surfaces were studied by conversion electron Mössbauer spectroscopy (CEMS). 57Fe layers were deposited as probe atoms in different layer positions in 10 ML thick Fe films. Fe layers of different thicknesses were formed on polished and cleaved substrate surfaces at RT deposition. The analysis of the spectra showed no Fe-O2- interaction in MgO/Fe interface. FeO phase formation was excluded. The Mössbauer spectrum of 5 ML 57Fe sample showed enhanced internal magnetic field at 80 K. No interdiffusion of 57Fe and 56Fe atoms was observed between the layers at room temperature.  相似文献   

8.
Mössbauer spectra and magnetic measurement of Ni0.7Mn0.3Gd0.1Fe1.9O4 ferrite were investigated by Oxford MS-500 Mössbauer spectrometer and superconducting quantum interference device (SQUID) magnetometer with a field 5 T. Ni0.7Mn0.3Gd0.1Fe1.9O4 nanoparticles have a considerable coercivity of 1040 Oe when the test temperature is reduced to 2 K. Mössbauer spectra show that Ni0.7Mn0.3Gd0.1Fe1.9O4 nanoparticles exhibit superparamagnetism at room temperature and ferrimagnetism at 77 K.  相似文献   

9.
CoAl0.2Fe1.8O4/SiO2 nanocomposites were prepared by sol–gel method. The effects of annealing temperature on the structure and magnetic properties of the samples were studied by X-ray diffraction, transmission electron microscopy, vibrating sample magnetometer and Mössbauer spectroscopy. The results show that the CoAl0.2Fe1.8O4 in the samples exhibits a spinel structure after being annealed. As annealing temperature increases from 800 to 1200 °C, the average grain size of CoAl0.2Fe1.8O4 in the nanocomposites increases from 5 to 41 nm while the lattice constant decreases from 0.8397 to 0.8391 nm, the saturation magnetization increases from 21.96 to 41.53 emu/g. Coercivity reaches a maximum of 1082 Oe for the sample annealed at 1100 °C, and thereafter decreases with further increasing annealing temperature. Mössbauer spectra show that the isomer shift decreases, hyperfine field increases and the samples transfer from mixed state of superparamagnetic and magnetic order to the completely magnetic order with annealing temperature increasing from 800 to 1200 °C.  相似文献   

10.
The magnetic properties of nickel ferrite nanoparticles in the form of powders, prepared by the sol-gel process and subjected to different annealing temperatures, were investigated using both static and dynamic measurements namely hysteresis, zero field cooled-field cooled magnetization (ZFC-FC) measurements and Mössbauer spectroscopy. The Transmission Electron Microscopy (TEM) studies reveal particle sizes for the as-prepared particles which increases upto 52 nm with annealing. A bimodal distribution, upto an annealing temperature of was observed. ZFC-FC measurements for the as-prepared samples reveal twin peaks, indicative of the bimodal size distribution. ZFC-FC measurements performed for fields varying from 100 Oe to 3 kOe show a superparamagnetic phase with blocking temperatures between 320 and . Numerical simulations for the ZFC-FC studies indicate that the signature of the bimodal size distribution can be seen only at very low fields. The variation of coercivity with particle size, as determined from the hysteresis measurements, shows a transition from a single domain to a multi domain state for particle sizes larger than 35 nm. Mössbauer measurements performed at room temperature for the as-prepared sample shows a six finger pattern for the samples with higher particle size and a doublet pattern for the samples with smaller particle size, which is indicative of their superparamagnetic nature.  相似文献   

11.
In this paper Mössbauer, Raman and dielectric spectroscopy studies of BiFeO3 (BFO) ceramic matrix with 3 or 10 wt% of Bi2O3 or PbO added, obtained through a new procedure based on the solid-state method, are presented. Mössbauer spectroscopy shows the presence of a single magnetically ordered phase with a hyperfine magnetic field of 50 T. Raman spectra of BFO over the frequency range of 100-900 cm−1 have been investigated, at room temperature, under the excitation of 632.8 nm wavelength in order to evaluate the effect of additives on the structure of the ceramic matrix. Detailed studies of the dielectric properties of BiFeO3 ceramic matrix like capacitance (C), dielectric permittivity (ε) and dielectric loss (tan δ), were investigated in a wide frequency range (1 Hz-1 MHz), and in a temperature range (303-373 K). The complex impedance spectroscopy (CIS) technique, showed that these properties are strongly dependent on frequency, temperature and on the added level of impurity. The temperature coefficient of capacitance (TCC) of the samples was also evaluated. The study of the imaginary impedance (−Z″) and imaginary electric modulus (M″) as functions of frequency and temperature leads to the measurement of the activation energy (Eac), which is directly linked to the relaxation process associated with the interfacial polarization effect in these samples.  相似文献   

12.
Magnetic properties of zero field cooled (ZFC) and field cooled (FC) sample of (Mn,Fe)2O3−t nanograins have been investigated by magnetometry (up to 70 kOe) and Mössbauer spectroscopy (up to 60 kOe) in the temperature interval 4.2–300 K. Large horizontal (up to 0.8 kOe) and vertical (up to 80%) shifts of the magnetization hysteresis loops are observed in the FC regime. The obtained results are discussed in terms of exchange interaction between an antiferromagnetic core and a spin-glass-like state of the nanograins boundaries. It is shown that hysteresis loop shifts (horizontal and vertical) depend on the field cooling magnitude, an effect that can be understood by the change of the boundary magnetic structure induced by the external magnetic field. The vertical magnetization shift is described by a phenomenological model, which takes into account the magnetic interaction between the spin-glass like boundary spins and the applied field.  相似文献   

13.
The inversion degree of a series of nanocrystalline samples of CoFe2O4 ferrites has been evaluated by a combined study, which exploits the saturation magnetization at 4.2 K and 57Fe Mössbauer spectroscopy. The samples, prepared by sol-gel autocombustion, have different thermal history and particle size. The differences observed in the saturation magnetization of these samples are explained in terms of different inversion degrees, as confirmed by the analysis of the components in the Mössbauer spectra. It is notable that the inversion degrees of the samples investigated are set among the highest values reported in the literature.  相似文献   

14.
Nanosize aluminum substituted nickel zinc ferrites were prepared through aerosol route and characterized using TEM, XRD, magnetic measurements and Mössbauer spectroscopy. The particle size of as obtained samples was found to be ∼10 nm which increases up to ∼85 nm upon annealing at 1200 °C. The unit cell parameter ‘a’ decreases linearly with concentration of aluminum due to the small ionic radius of aluminum. The saturation magnetization for all the samples after annealing at 1200 °C lies in the range 12.9–72.6 emu/g and decreases linearly with concentration of aluminum. Room temperature Mössbauer spectra of all as obtained samples of ferrite compositions exhibited a broad doublet suggesting super paramagnetic nature. This doublet is further resolved into two doublets and assigned to the surface region and internal region atoms of the particles. The samples annealed at 1200 °C show broad sextets, which were fitted with five sextets, indicating different local environment of both tetrahedrally and octahedrally coordinated Fe cation.  相似文献   

15.
The aim of the present work is to compare the structural, the composition and chemical state of the surface and magnetic properties of different nanosized CuFe2O4 powders exhibiting collective Jahn-Teller effect. The samples under examination consist of edged nanosized particles (needle like) with average length 1300 ± 20 nm and diameter 300 ± 20 nm obtained after high temperature synthesis, and superparamagnetic (at room temperature) spherical particles (d = 6 ± 2 nm), obtained by soft chemistry techniques. The surface composition of the particles was investigated by X-ray photoelectron spectroscopy (XPS). Mössbauer spectroscopy (MöS), including at high magnetic field up to 5 T and 4.2 K, was used for characterization of cation distribution in the samples. The data yielded by the XPS and MöS analyses for spherical nanosized particles led us to the assumption for the existence of a Jahn-Teller effect gradient—from the B-sublattice on the surface to a compensation of the tetragonal distortion in the two sublattices in the core. The analysis of the contribution of the anisotropy energy in edged and spherical nanoparticles shows that it must be considered as an effective value reflecting the influence of the individual factors depending on the particle shape and surface.  相似文献   

16.
Thermo-gravimetric, differential scanning calorimetry and comprehensive 57Fe Mössbauer spectroscopy studies of amorphous and crystalline ferromagnetic glass coated (Co0.2Fe0.8)72.5Si12.5B15 micro-wires have been recorded. The Curie temperature of the amorphous phase is TC(amorp) ∼730 K. The analysis of the Mössbauer spectra reveals that below 623 K the easy axis of the magnetization is axial-along the wires, and that a tangential or/and radial orientation occurs at higher temperatures. At 770 K, in the first 4 hours the Mössbauer spectrum exhibits a pure paramagnetic doublet. Crystallization and decomposition to predominantly α-Fe(Si) and Fe2B occurs either by raising the temperature above 835 K or isothermally in time at lower temperatures. Annealing for a day at 770 K, leads to crystallization. In the crystalline material the magnetic moments have a complete random orientation. After cooling back to ambient temperature, both α-Fe(Si) and Fe2B in the glass coated wire show pure axial magnetic orientation like in the original amorphous state. The observed spin reorientations are associated with changes in the stress induced by the glass coating.  相似文献   

17.
The mechanosynthesis of Fe50Zn50 alloy resulted in the formation of the bcc Fe(Zn) solid solution after 20 h of milling. Structural transformations induced by mechanical alloying and heating, and magnetic properties of the powders were studied by Mössbauer spectroscopy, X-ray diffraction, Faraday balance and vibrating sample magnetometry techniques. All alloys studied exhibit strong magnetic ordering with Curie temperatures close to 900 K. Room temperature Mössbauer measurements revealed distinguished magnetic environments in the samples. The decrease of coercivity with prolonged milling time was attributed to the reduction or averaging of local magnetic anisotropies.  相似文献   

18.
Anti-Invar effect was revealed in the fcc Fe-25.3%Ni-0.73%C (wt%) alloy, which demonstrates high values of thermal expansion coefficient (TEC) (15-21)×10−6 K−1 accompanied by almost temperature-insensitive behavior in temperature range of 122-525 K. Alloying with carbon considerably expanded the low temperature range of anti-Invar behavior in fcc Fe-Ni-based alloy. The Curie temperature of the alloy TC=195 K was determined on measurements of temperature dependences of magnetic susceptibility and saturation magnetization. The Mössbauer and small-angle neutron scattering (SANS) experiments on the fcc Fe-25.3%Ni-(0.73-0.78)%C alloys with the varying temperatures below and above the Curie point and in external magnetic field of 1.5-5 T were conducted. Low value of the Debye temperature ΘD=180 K was estimated using the temperature dependence of the integral intensity of Mössbauer spectra for specified temperature range. The inequality Beff=(0.7-0.9)Bext was obtained in external field Mössbauer measurement that points to antiferromagnetically coupled Fe atoms, which have a tendency to align their spins perpendicular to Bext. Nano length scale magnetic inhomogeneities nearby and far above TC were revealed, which assumed that it is caused by mixed antiferromagnetically and ferromagnetically coupled Fe atom spins. The anti-Invar behavior of Fe-Ni-C alloy is explained in terms of evolution of magnetic order with changing temperature resulting from thermally varied interspin interaction and decreasing stiffness of interatomic bond.  相似文献   

19.
Materials containing hybrid spheres of aluminum oxide and superparamagnetic nanoparticles of iron oxides were obtained from a chemical precursor prepared by admixing chitosan and iron and aluminum hydroxides. The oxides were first characterized with scanning electron microscopy, X-ray diffraction, and Mössbauer spectroscopy. Scanning electron microscopy micrographs showed the size distribution of the resulting spheres to be highly homogeneous. The occurrence of nano-composites containing aluminum oxides and iron oxides was confirmed from powder X-ray diffraction patterns; except for the sample with no aluminum, the superparamagnetic relaxation due to iron oxide particles were observed from Mössbauer spectra obtained at 298 and 110 K; the onset six line-spectrum collected at 20 K indicates a magnetic ordering related to the blocking relaxation effect for significant portion of small spheres in the sample with a molar ratio Al:Fe of 2:1.  相似文献   

20.
Co2TiSn Heusler alloy films were grown on MgO substrates at the substrate temperature between 200 and 600 °C using atomically controlled alternate deposition and magnetic hyperfine field at the Sn nuclei was measured by the Mössbauer spectroscopy and the nuclear resonant scattering method. The relation between the hyperfine field and the structural disorder estimated by X-ray diffraction measurements was also examined. The results showed that the sample prepared at higher substrate temperature has higher degree of L21 order and larger hyperfine field. For the Co2TiSn film grown at 600 °C, the hyperfine field estimated from the oscillatory pattern of the nuclear resonant time spectra was 6.1 T at room temperature and increased with a decrease of temperature to 7.5, 8.1, and 8.3 T at 200, 100, and 5 K, respectively, which shows that the film prepared by this method and condition has almost the same magnetization value and Curie temperature as bulk samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号