首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The synthesis, structure, and physical properties of a novel series of oxalate-based bimetallic magnets obtained by using the Ir(ppy)2(bpy)]+ cation as a template of the bimetallic [M(II)M(III)(ox)3]- network are reported. The compounds can be formulated as [Ir(ppy)2(bpy)][M(II)Cr(III)(ox)3] x 0.5 H2O (M(II) = Ni, Mn, Co, Fe, and Zn) and [Ir(ppy)2(bpy)]-[M(II)Fe(III)(ox)3] x 0.5 H2O (M(II) = Fe, Mn) and crystallize in the chiral cubic space group P4(1)32 or P4(3)32. They show the well-known 3D chiral structure formed by M(II) and M(III) ions connected through oxalate anions with [Ir(ppy)2(bpy)]+ cations and water molecules in the holes left by the oxalate network. The M(II)Cr(III) compounds behave as soft ferromagnets with ordering temperatures up to 13 K, while the Mn(II)Fe(III) and Fe(II)Fe(III) compounds behave as a weak ferromagnet and a ferrimagnet, respectively, with ordering temperatures of 31 and 28 K. These values represent the highest ordering temperatures so far reported in the family of 3D chiral magnets based on bimetallic oxalate complexes.  相似文献   

2.
The preparation and crystal structures of two oxalato-bridged FeII-FeIII mixed-valence compounds, [FeII(bpm)3]2[FeIII2(ox)5].8H2O (1) and FeII(bpm)3Na(H2O)2FeIII(ox)(3).4H2O (2) (bpm = 2,2'-bipyrimidine; ox = oxalate dianion) are reported here. Complex 1 crystallizes in the triclinic system, space group P1, with a = 10.998(2) A, b = 13.073(3) A, c = 13.308(3) A, alpha = 101.95(2) degrees, beta = 109.20(2) degrees, gamma = 99.89(2) degrees, and Z = 1. Complex 2 crystallizes in the monoclinic system, space group P2(1)/c, with a = 12.609(2) A, b = 19.670(5) A, c = 15.843(3) A, beta = 99.46(1) degrees, and Z = 4. The structure of complex 1 consists of centrosymmetric oxalato-bridged dinuclear high-spin iron(III) [Fe2(ox)5]2- anions, tris-chelated low-spin iron(II) [Fe(bpm)3]2+ cations, and lattice water molecules. The iron atoms are hexacoordinated: six oxygen atoms (iron(III)) from two bidentate and one bisbidentate oxalato ligands and six nitrogen atoms (iron(II)) from three bidentate bpm groups. The Fe(III)-O(ox) and Fe(II)-N(bpm) bond distances vary in the ranges 1.967(3)-2.099(3) and 1.967(4)-1.995(3) A, respectively. The iron(III)-iron(III) separation across the bridging oxalato is 5.449(2) A, whereas the shortest intermolecular iron(III)-iron(II) distance is 6.841(2) A. The structure of complex 2 consists of neutral heterotrinuclear Fe(bpm)2Na(H2O)2Fe(ox)3 units and water molecules of crystallization. The tris-chelated low-spin iron(II) ([Fe(bpm)3]2+) and high-spin iron(III) ([Fe(ox)3]3-) entities act as bidentate ligands (through two bpm-nitrogen and two oxalato-oxygen atoms, respectively) toward the univalent sodium cation, yielding the trinuclear (bpm)2Fe(II)-bpm-Na(I)-ox-Fe(III)(ox)2 complex. Two cis-coordinated water molecules complete the distorted octahedral surrounding of the sodium atom. The ranges of the Fe(II)-N(bpm) and Fe(III)-O(ox) bond distances [1.968(6)-1.993(5) and 1.992(6)-2.024(6) A, respectively] compare well with those observed in 1. The Na-N(bpm) bond lengths (2.548(7) and 2.677(7) A) are longer than those of Na-O(ox) (2.514(7) and 2.380(7) A) and Na-O(water) (2.334(15) and 2.356(12) A). The intramolecular Fe(II)...Fe(III) separation is 6.763(2) A, whereas the shortest intermolecular Fe(II)...Fe(II) and Fe(III)...Fe(III) distances are 8.152(2) and 8.992(2) A, respectively. Magnetic susceptibility measurements in the temperature range 2.0-290 K for 1 reveal that the high-spin iron(III) ions are antiferromagnetically coupled (J = -6.6 cm-1, the Hamiltonian being defined as H = -JS1.S2). The magnitude of the antiferromagnetic coupling through the bridging oxalato in the magneto-structurally characterized family of formula [M2(ox)5](2m-10)+ (M = Fe(III) (1), Cr(III), and Ni(II)) is analyzed and discussed by means of a simple orbital model.  相似文献   

3.
Three-dimensional network structures of [Ru(II/III)(2)(O(2)CMe)(4)](3)[M(III)(CN)(6)] (M = Cr, Fe, Co) composition have been formed and their magnetic properties characterized. [Ru(II/III)(2)(O(2)CMe)(4)](3)[M(III)(CN)(6)] (M = Cr, Fe, Co) have nu(CN) IR absorptions at 2138, 2116, and 2125 cm(-1) and have body-centered unit cells (a = 13.34, 13.30, and 13.10 A, respectively) with -M-Ctbd1;N-Ru=Ru-Ntbd1;C-M- linkages along all three Cartesian axes. [Ru(II/III)(2)(O(2)CMe)(4)](3)[Cr(III)(CN)(6)] magnetically orders as a ferrimagnet (T(c) = 33 K) and has an unusual constricted hysteresis loop.  相似文献   

4.
The salt [K(18-crown-6)][Mn(H2O)2Cr(ox)3.0.5(18-crown-6) (1) has been prepared and structurally and magnetically characterized. It crystallizes in the P2(1)/c space group [a = 21.011(2) A, b = 11.265(2) A, c = 15.748(3) A, beta = 105.952(6) degrees , V = 3584(1) A3, and Z = 4] and contains [Mn(H2O)2Cr(ox)3]infinity chains connected through hydrogen bonding to form 2D anionic networks. The magnetic exchange is ferromagnetic [J = +2.23(2) cm(-1)] in the chain and also in between chains, reaching bulk ferromagnetic ordering below 3.5 K.  相似文献   

5.
Neutral layers of the bimetallic oxalate complex {[Co(H2O)2]3[Cr(ox)3]2}infinity are formed in the presence of a crown ether and stabilized by hydrogen bonding. The resulting soluble ferromagnet orders at Tc = 7.4 K.  相似文献   

6.
The reaction of [M(CN)6]3- (M = Cr3+, Fe3+, Co3+) with the nickel(II) complex of 2,4-diamino-1,3,5-triazin-6-yl-{3-(1,3,5,8,12-pentaazacyclotetradecane)} ([NiL]2+) in excess of ANO3 or ACl (A = Li+, Na+, K+, Rb+, Cs+, NH4+) leads to the cyano-bridged dinuclear assemblies A{[NiL][M(CN)6]}.xH2O (x = 2-5). X-ray structures of Li{[NiL][Cr(CN)6]}.5H2O, NH4{[NiL][Cr(CN)6]}.3.5H2O, K{[NiL][Cr(CN)6]}.4H2O, K{[NiL][Fe(CN)6]}.4H2O, Rb{[NiL][Fe(CN)6]}.3.5H2O, and Cs{[NiL][Fe(CN)6]}.3.5H2O, as well as the powder diffractometry of the entire Fe(III) series, are reported. The magnetic properties of the assemblies are dependent on the monocation A and discussed in detail. New efficient pathways for ferromagnetic exchange between Ni(II) and Fe(III) or Cr(III) are demonstrated. Field dependencies of the magnetization for the Fe(III) samples at low temperature and low magnetic field indicate a weak interchain antiferromagnetic coupling, which is switched to ferromagnetic coupling at increasing magnetic field (metamagnetic behavior). The interchain magnetic coupling can be tuned by the size of the A cations.  相似文献   

7.
Two new mixed-metal sandwich complexes [M(II)2(H2O)2Fe(III)2(P2W15O56)2]14- (abbreviated [M2Fe2P4W30], M(II) = Co(II), Mn(II)) were obtained at pH 3 by addition of M2+ to [Na2(H2O)2Fe(III)2(P2W15O56)2]16- (abbreviated [Na2Fe2P4W30]) without substitution in the alpha-[P2W15O56]12- (abbreviated [P2W15]) units. Their X-ray structures are reported. At lower pH, back conversion to [Na2Fe2P4W30] was followed by 31P NMR, electrochemistry and UV-visible spectroscopy. The preparation and the characterization in solution of the lacunary intermediate [NaCo(II)(H2O)2Fe(III)2(P2W15O56)2]15- (abbreviated [NaCoFe2P4W30]) is also described.  相似文献   

8.
Reactions between [M(N(4)-macrocycle)](2+) (M = Zn(II) and Ni(II); macrocycle ligands are either CTH = d,l-5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane or cyclam = 1,4, 8, 11-tetrazaazaciclotetradecane) and [M(CN)(6)](3-) (M = Fe(III) and Mn(III)) give rise to cyano-bridged assemblies with 1D linear chain and 2D honeycomblike structures. The magnetic measurements on the 1D linear chain complex [Fe(cyclam)][Fe(CN)(6)].6H(2)O 1 points out its metamagnetic behavior, where the ferromagnetic interaction operates within the chain and the antiferromagnetic one between chains. The Neel temperature, T(N), is 5.5 K and the critical field at 2 K is 1 T. The unexpected ferromagnetic intrachain interaction can be rationalized on the basis of the axially elongated octahedral geometry of the low spin Fe(III) ion of the [Fe(cyclam)](3+) unit. The isostructural substitution of [Fe(CN)(6)](3-) by [Mn(CN)(6)](3-) in the previously reported complex [Ni(cyclam)](3)[Fe(CN)(6)](2).12H(2)O 2 leads to [Ni(cyclam)](3)[Mn(CN)(6)](2).16 H(2)O 3, which exhibits a corrugated 2D honeycomblike structure and a metamagnetic behavior with T(N) = 16 K and a critical field of 1 T. In the ferromagnetic phase (H > 1 T) this compound shows a very important coercitive field of 2900 G at 2 K. Compound [Ni(CTH)](3)[Fe(CN)(6)](2).13H(2)O 4, C(60)H(116)Fe(2)N(24)Ni(3)O(13), monoclinic, A 2/n, a = 20.462(7), b = 16.292(4), c = 27.262(7) A, beta = 101.29(4) degrees, Z = 4, also has a corrugated 2D honeycomblike structure and a ferromagnetic intralayer interaction, but, in contrast to 2 and 3, does not exhibit any magnetic ordering. This fact is likely due to the increase of the interlayer separation in this compound. ([Zn(cyclam)Fe(CN)(6)Zn(cyclam)] [Zn(cyclam)Fe(CN)(6)].22H(2)O.EtOH) 5, C(44)H(122)Fe(2)N(24)O(23)Zn(3), monoclinic, A 2/n, a = 14.5474(11), b = 37.056(2), c = 14.7173(13) A, beta = 93.94(1) degrees, Z = 4, presents an unique structure made of anionic linear chains containing alternating [Zn(cyclam)](2+) and [Fe(CN)(6)](3)(-) units and cationic trinuclear units [Zn(cyclam)Fe(CN)(6)Zn(cyclam)](+). Their magnetic properties agree well with those expected for two [Fe(CN)(6)](3-) units with spin-orbit coupling effect of the low spin iron(III) ions.  相似文献   

9.
A new series of homo- and heterometallic oxalato-bridged dinuclear compounds of formulas [Et4N]4[MM'(ox)(NCS)8] ([Et4N]+ = [(C2H5)4N]+; ox = C2O4(2-)) with MM' = Cr(III)-Cr(III) (1), Fe(III)-Fe(III) (2), and Cr(III)-Fe(III) (3) is reported. They have been structurally characterized by infrared spectra and single-crystal X-ray diffraction. The three compounds are isostructural and crystallize in the orthorhombic space group Cmca with Z = 8, a = 16.561(8) A, b = 13.481(7) A, and c = 28.168(8) A for 1, a = 16.515(2) A, b = 13.531(1) A, and c = 28.289(4) A for 2, a = 16.664(7) A, b = 13.575(6) A, and c = 28.386(8) A for 3. The structure of 3 is made up of a discrete dinuclear anion [CrFe(ox)(NCS)8]4- and four disordered [Et4N]+ cations, each of them located on special positions. The anion, in a crystallographically imposed C2h symmetry, contains metal cations in distorted octahedral sites. The Cr(ox)Fe group, which is planar within 0.02 A, presents an intramolecular metal-metal distance of 5.43 A. Magnetic susceptibility measurements indicate antiferromagnetic pairwise interactions for 1 and 2 with J = -3.23 and -3.84 cm-1, respectively, and ferromagnetic Cr-Fe coupling with J = 1.10 cm-1 for 3 (J being the parameter of the exchange Hamiltonian H = -2JS1S2). The ESR spectra at different temperatures confirm the magnetic susceptibility data.  相似文献   

10.
The new cyano complexes of formulas PPh(4)[Fe(III)(bipy)(CN)(4)] x H(2)O (1), [[Fe(III)(bipy)(CN)(4)](2)M(II)(H(2)O)(4)] x 4H(2)O with M = Mn (2) and Zn (3), and [[Fe(III)(bipy)(CN)(4)](2)Zn(II)] x 2H(2)O (4) [bipy = 2,2'-bipyridine and PPh(4) = tetraphenylphosphonium cation] have been synthesized and structurally characterized. The structure of complex 1 is made up of mononuclear [Fe(bipy)(CN)(4)](-) anions, tetraphenyphosphonium cations, and water molecules of crystallization. The iron(III) is hexacoordinated with two nitrogen atoms of a chelating bipy and four carbon atoms of four terminal cyanide groups, building a distorted octahedron around the metal atom. The structure of complexes 2 and 3 consists of neutral centrosymmetric [[Fe(III)(bipy)(CN)(4)](2)M(II)(H(2)O)(4)] heterotrinuclear units and crystallization water molecules. The [Fe(bipy)(CN)(4)](-) entity of 1 is present in 2 and 3 acting as a monodentate ligand toward M(H(2)O)(4) units [M = Mn(II) (2) and Zn(II) (3)] through one cyanide group, the other three cyanides remaining terminal. Four water molecules and two cyanide nitrogen atoms from two [Fe(bipy)(CN)(4)](-) units in trans positions build a distorted octahedron surrounding Mn(II) (2) and Zn(II) (3). The structure of the [Fe(phen)(CN)(4)](-) complex ligand in 2 and 3 is close to that of the one in 1. The intramolecular Fe-M distances are 5.126(1) and 5.018(1) A in 2 and 3, respectively. 4 exhibits a neutral one-dimensional polymeric structure containing two types of [Fe(bipy)(CN)(4)](-) units acting as bismonodentate (Fe(1)) and trismonodentate (Fe(2)) ligands versus the divalent zinc cations through two cis-cyanide (Fe(1)) and three fac-cyanide (Fe(2)) groups. The environment of the iron atoms in 4 is distorted octahedral as in 1-3, whereas the zinc atom is pentacoordinated with five cyanide nitrogen atoms, describing a very distorted square pyramid. The iron-zinc separations across the single bridging cyanides are 5.013(1) and 5.142(1) A at Fe(1) and 5.028(1), 5.076(1), and 5.176(1) A at Fe(2). The magnetic properties of 1-3 have been investigated in the temperature range 2.0-300 K. 1 is a low-spin iron(III) complex with an important orbital contribution. The magnetic properties of 3 correspond to the sum of two magnetically isolated spin triplets, the antiferromagnetic coupling between the low-spin iron(III) centers through the -CN-Zn-NC- bridging skeleton (iron-iron separation larger than 10 A) being very weak. More interestingly, 2 exhibits a significant intramolecular antiferromagnetic interaction between the central spin sextet and peripheral spin doublets, leading to a low-lying spin quartet.  相似文献   

11.
Reaction of aqueous AgNO(3) with aqueous M(3)[Cr(ox)(3)] in >or=3:1 molar ratio causes the rapid growth of large, cherry-black, light-stable crystals which are not Ag(3)[Cr(ox)(3)], but [M(0.5)(H(2)O)(3)]@[Ag(2.5)Cr(ox)(3)] (ox(2)(-) = oxalate, C(2)O(4)(2)(-); M = Na, K, Cs, Ag, or mixtures of Ag and a group 1 element). The structure of these crystals contains an invariant channeled framework, with composition [[Ag(2.5)Cr(ox)(3)](-)(0.5)]( infinity ), constructed with [Cr(ox)(3)] coordination units linked by Ag atoms through centrosymmetric [Cr-O(2)C(2)O(2)-Ag](2) double bridges. The framework composition [Ag(2.5)Cr(ox)(3)](-)(0.5) occurs because one Ag is located on a 2-fold axis. Within the channels there is a well-defined and ordered set of six water molecules, strongly hydrogen bonded to each other and some of the oxalate O atoms. This invariant channel plus water structure accommodates group 1 cations, and/or Ag cations, in different locations and in variable proportions, but always coordinated by channel water and some oxalate O atoms. The general formulation of these crystals is therefore [M(x)Ag(0.5-x)(H(2)O)(3)]@[Ag(2.5)Cr(ox)(3)]. Five different crystals with this structure are reported, with compositions 1 Ag(0.5)[Ag(2.5)Cr(ox)(3)](H(2)O)(3), 2 Cs(0.19)Ag(0.31)[Ag(2.5)Cr(ox)(3)](H(2)O)(3), 3 K(0.28)Ag(0.22)[Ag(2.5)Cr(ox)(3)](H(2)O)(3), 4 Cs(0.41)Ag(0.09)[Ag(2.5)Cr(ox)(3)](H(2)O)(3), and 5 Cs(0.43)Ag(0.07) [Ag(2.5)Cr(ox)(3)](H(2)O)(3). All crystallize in space group C2/c, with a approximately 18.4, b approximately 14.6, c approximately 12.3 A, beta approximately 113 degrees. Pure Ag(3)[Cr(ox)(3)](H(2)O)(3), which has the same crystal structure (1), was obtained from water by treating Li(3)[Cr(ox)(3)] with excess AgNO(3). Complete dehydration of all of these compounds occurs between 30 and 100 degrees C, with loss of diffraction, but rehydration by exposure to H(2)O(g) at ambient temperature leads to recovery of the original diffraction pattern. In single crystals, this reversible dehydration-hydration occurs without visually evident crystal change, but with loss of mechanical strength. We postulate a general mechanism for transport of water molecules along the channels, associated with local partial collapses of the channel framework, with concomitant bending but little breaking of the host Ag-O and Cr-O bonds, which is readily reversed.  相似文献   

12.
In the three-dimensional oxalate network structures [M(II)(bpy)3][M(I)-M(III)(ox)3] (ox= C2O4(2-); bpy = 2,2'-bipyridine) the negatively charged oxalate backbone provides perfect cavities for tris-bipyridyl complex cations. The size of the cavity can be adjusted by variation of the metal ions of the oxalate backbone. In [Co(bpy)3][NaCr(ox)3], the [Co(bpy)3]2 + complex is in its usual 4T1(t2g5e(g)2) high-spin ground state. Substituting Na+ by Li+ reduces the size of the cavity. The resulting chemical pressure destabilises the high-spin state of [Co(bpy)3]2+ to such an extent that the 2E(t2g6e(g)1) low-spin state becomes the actual ground state. As a result. [Co(bpy)3][LiCr(ox)3] becomes a spin-crossover system, as shown by temperature-dependent magnetic susceptibility measurements and single-crystal optical spectroscopy, as well as by an X-ray structure determination at 290 and 10 K.  相似文献   

13.
Gu ZG  Yang QF  Liu W  Song Y  Li YZ  Zuo JL  You XZ 《Inorganic chemistry》2006,45(22):8895-8901
The reactions of [M(II)(Tpm(Me))(H2O)3]2+ (M = Ni, Co, Fe; Tpm(Me) = tris(3,5-dimethyl-1-pyrazoyl)methane) with [Bu4N][(Tp)Fe(III)(CN)3] (Bu4N+ = tetrabutylammonium cation; Tp = tris(pyrazolyl)hydroborate) in MeCN-Et2O afford three pentanuclear cyano-bridged clusters, [(Tp)3(Tpm(Me))2Fe(III)3M(II)2(CN)9]ClO4.15H2O (M = Ni, 1; M = Co, 2) and [(Tp)3(Tpm(Me))2Fe(III)3Fe(II)2(CN)9]BF4.15H2O (3). Single-crystal X-ray analyses reveal that they show the same trigonal bipyramidal structure featuring a D3h-symmetry core, in which two opposing Tpm(Me)-ligated M(II) ions situated in the two apical positions are linked through cyanide bridges to an equatorial triangle of three Tp-ligated Fe(III) (S = 1/2) centers. Magnetic studies for complex 1 show ferromagnetic coupling giving an S = 7/2 ground state and an appreciable magnetic anisotropy with a negative D(7/2) value equal to -0.79 cm(-1). Complex 2 shows zero-field splitting parameters deducted from the magnetization data with D = -1.33 cm(-1) and g = 2.81. Antiferromagnetic interaction was observed in complex 3.  相似文献   

14.
Synthesis, structure determination by single-crystal X-ray diffraction, and physical properties are reported and compared for superconducting and semiconducting molecular charge-transfer salts with stoichiometry (BEDT-TTF)(4)[A(I)M(III)(C(2)O(4))(3)].PhCN, where A(I) = H(3)O, NH(4), K; M(III) = Cr, Fe, Co, Al; BEDT-TTF = bis(ethylenedithio) tetrathiafulvalene. Attempts to substitute M(III) with Ti, Ru, Rh, or Gd are also described. New compounds with M = Co and Al are prepared and detailed structural comparisons are made across the whole series. Compounds with A = H(3)O(+) and M = Cr, Fe are monoclinic (space group C2/c), at 150, 120 K a = 10.240(1) A, 10.232(12) A; b = 19.965(1) A, 20.04(3) A; c = 34.905(1) A, 34.97(2) A; beta = 93.69(1) degrees, 93.25(11) degrees, respectively, both with Z = 4. These salts are metallic at room temperature, becoming superconducting at 5.5(5) or 8.5(5) K, respectively. A polymorph with A = H(3)O(+) and M = Cr is orthorhombic (Pbcn) with a = 10.371(2) A, b = 19.518(3) A, c = 35.646(3) A, and Z = 4 at 150 K. When A = NH(4)(+), M = Fe, Co, Al, the compounds are also orthorhombic (Pbcn), with a = 10.370(5) A, 10.340(1) A, 10.318(7) A; b = 19.588(12) A, 19.502(1) A, 19.460(4) A; c = 35.790(8) A, 35.768(1) A, 35.808(8) A at 150 K, respectively, with Z = 4. All of the Pbcn phases are semiconducting with activation energies between 0.15 and 0.22 eV. For those compounds which are thought to contain H(3)O(+), Raman spectroscopy or C=C and C-S bond lengths of the BEDT-TTF molecules confirm the presence of H(3)O(+) rather than H(2)O. In the monoclinic compounds the BEDT-TTF molecules adopt a beta' ' packing motif while in the orthorhombic phases (BEDT-TTF)(2) dimers are surrounded by monomers. Raman spectra and bond length analysis for the latter confirm that each molecule of the dimer has a charge of +1 while the remaining donors are neutral. All of the compounds contain approximately hexagonal honeycomb layers of [AM(C(2)O(4))(3)] and PhCN, with the solvent occupying a cavity bounded by [M(C(2)O(4))(3)](3-) and A. In the monoclinic series each layer contains one enantiomeric conformation of the chiral [M(C(2)O(4))(3)](3-) anions with alternate layers having opposite chirality, whereas in the orthorhombic series the enantiomers form chains within each layer. Analysis of the supramolecular organization at the interface between the cation and anion layers shows that this difference is responsible for the two different BEDT-TTF packing motifs, as a consequence of weak H-bonding interactions between the terminal ethylene groups in the donor and the [M(C(2)O(4))(3)](3-) oxygen atoms.  相似文献   

15.
The mononuclear PPh4[Fe(phen)(CN)4]*2H2O (1) complex and the cyanide-bridged bimetallic [[Fe(phen)(CN)4]2M(H2O)2]*4H2O compounds [M = Mn(II) (2) and Zn(II) (3); phen = 1,10-phenanthroline; PPh4 = tetraphenylphosphonium cation] have been synthesized and structurally and magnetically characterized. Complex 1 crystallizes in the monoclinic system, space group P2(1)/c, with a = 9.364(4) A, b = 27.472(5) A, c = 14.301(3) A, beta = 97.68(2) degrees, and Z = 4. Complexes 2 and 3 are isostructural and they crystallize in the monoclinic system, space group P2(1)/n, with a = 7.5292(4) A, b = 15.6000(10) A, c = 15.4081(9) A, beta = 93.552(2) degrees, and Z = 2 for 2 and a = 7.440(1) A, b = 15.569(3) A, c = 15.344(6) A, beta = 93.63(2) degrees, and Z = 2 for 3. The structure of complex 1 is made up of mononuclear [Fe(phen)(CN)4]- anions, tetraphenyphosphonium cations, and water molecules of crystallization. The iron(III) is hexacoordinate with two nitrogen atoms of a chelating phen (2.018(6) and 2.021(6) A for Fe-N) and four carbon atoms of four terminal cyanide groups (Fe-C bond lengths varying in the range 1.906(8)-1.95(1) A) building a distorted octahedron around the metal atom. The structure of complexes 2 and 3 consists of neutral double zigzag chains of formula [[Fe(phen)(CN)4]2M(H2O)2] and crystallization water molecules. The [Fe(phen)(CN)4]- entity of 1 is present in 2 and 3 acting as a bridging ligand toward M(H2O)2 units [M = Mn(II) (2) and Zn(II) (3)] through two cyanide groups in cis positions, the other two cyanide remaining terminal. Two water molecules in trans positions and four cyanide-nitrogen atoms from four [Fe(phen)(CN)4]- units build a distorted octahedral surrounding Mn(II) (2) and Zn(II) (3). The M-O bond lengths are 2.185(3) (2) and 2.105(3) A (3), whereas the M-N bond distances vary in the ranges 2.210(3)-2.258(3) A (2) and 2.112(3)-2.186(3) A (3). The structure of the [Fe(phen)(CN)4]- complex ligand in 2 and 3 is as in 1. The shorter intrachain Fe-M distances through bridging cyano are 5.245(5) and 5.208(5) A in 2 and 5.187(1) and 5.132(1) A in 3. The magnetic properties of 1-3 have been investigated in the temperature range 2.0-300 K. Complex 1 is a low-spin iron(III) complex with an appreciable orbital contribution. The magnetic properties of 3 correspond to the sum of two magnetically isolated spin triplets, the magnetic coupling between the low-spin iron(III) centers through the -CN-Zn-NC- bridging skeleton (iron-iron separation larger than 10.2 A) being negligible. More interestingly, 2 exhibits one-dimensional ferrimagnetic behavior due to the noncompensation of the local interacting spins (S(Mn) = 5/2 and S(Fe) = 1/2) which interact antiferromagnetically through bridging cyano groups. A comparison between the magnetic properties of the isostructural compounds 2 and 3 allow us to check the antiferromagnetic coupling in 2.  相似文献   

16.
Treatment of several divalent transition-metal trifluoromethanesulfonates [M(II)(OTf)2; M(II) = Mn, Co, Ni] with [NEt4][Tp*Fe(III)(CN)3] [Tp* = hydridotris(3,5-dimethylpyrazol-1-yl)borate] in DMF affords three isostructural rectangular clusters of {[Tp*Fe(III)(CN)3M(II)(DMF)4]2[OTf]2} x 2DMF (M(II) = Mn, 3; Co, 4; Ni, 5) stoichiometry. Magnetic studies of 3-5 indicate that the Tp*Fe(CN)3(-) centers are highly anisotropic and exhibit antiferromagnetic (3 and 4) and ferromagnetic (5) exchange to afford S = 4, 2, and 3 spin ground states, respectively. ac susceptibility measurements suggest that 4 and 5 exhibit incipient single-molecule magnetic behavior below 2 K.  相似文献   

17.
Interaction of the lacunary [alpha-XW(9)O(33)](9-) (X = As(III), Sb(III)) with Fe(3+) ions in acidic, aqueous medium leads to the formation of dimeric polyoxoanions, [Fe(4)(H(2)O)(10)(beta-XW(9)O(33))(2)](6-) (X = As(III), Sb(III)) in high yield. X-ray single-crystal analyses were carried out on Na(6)[Fe(4)(H(2)O)(10)(beta-AsW(9)O(33))(2)] x 32H(2)O, which crystallizes in the monoclinic system, space group C2/m, with a = 20.2493(18) A, b = 15.2678(13) A, c = 16.0689(14) A, beta = 95.766(2) degrees, and Z = 2; Na(6)[Fe(4)(H(2)O)(10)(beta-SbW(9)O(33))(2)] x 32H(2)O is isomorphous with a = 20.1542(18) A, b = 15.2204(13) A, c = 16.1469(14) A, and beta = 95.795(2) degrees. The selenium and tellurium analogues are also reported, [Fe(4)(H(2)O)(10)(beta-XW(9)O(33))(2)](4-) (X = Se(IV), Te(IV)). They are synthesized from sodium tungstate and a source of the heteroatom as precursors. X-ray single-crystal analysis was carried out on Cs(4)[Fe(4)(H(2)O)(10)(beta-SeW(9)O(33))(2)] x 21H(2)O, which crystallizes in the triclinic system, space group P macro 1, with a = 12.6648(10) A, b = 12.8247(10) A, c = 16.1588(13) A, alpha = 75.6540(10) degrees, beta = 87.9550(10) degrees, gamma = 64.3610(10) gamma, and Z = 1. All title polyanions consist of two (beta-XW(9)O(33)) units joined by a central pair and a peripheral pair of Fe(3+) ions leading to a structure with idealized C(2h) symmetry. It was also possible to synthesize the Cr(III) derivatives [Cr(4)(H(2)O)(10)(beta-XW(9)O(33))(2)](6-) (X = As(III), Sb(III)), the tungstoselenates(IV) [M(4)(H(2)O)(10)(beta-SeW(9)O(33))(2)]((16)(-)(4n)-) (M(n+) = Cr(3+), Mn(2+), Co(2+), Ni(2+), Zn(2+), Cd(2+), and Hg(2+)), and the tungstotellurates(IV) [M(4)(H(2)O)(10)(beta-TeW(9)O(33))(2)]((16-4n)-) (M(n+) = Cr(3+), Mn(2+), Co(2+), Ni(2+), Cu(2+), Zn(2+), Cd(2+), and Hg(2+)), as determined by FTIR. The electrochemical properties of the iron-containing species were also studied. Cyclic voltammetry and controlled potential coulometry aided in distinguishing between Fe(3+) and W(6+) waves. By variation of pH and scan rate, it was possible to observe the stepwise reduction of the Fe(3+) centers.  相似文献   

18.
The non-symmetric imide ligand Hpypzca (N-(2-pyrazylcarbonyl)-2-pyridinecarboxamide) has been deliberately synthesised and used to produce nine first row transition metal complexes: [M(II)(pypzca)(2)], M = Zn, Cu, Ni, Co, Fe; [M(III)(pypzca)(2)]Y, M = Co and Y = BF(4), M = Fe and Y = ClO(4); [Cu(II)(pypzca)(H(2)O)(2)]BF(4), [Mn(II)(pypzca)(Cl)(2)]HNEt(3). These are the first deliberately prepared complexes of a non-symmetric imide ligand. X-ray crystal structures of [Cu(II)(pypzca)(2)]·H(2)O, [Co(II)(pypzca)(2)], [Co(III)(pypzca)(2)]BF(4), [Cu(II)(pypzca)(H(2)O)(2)]BF(4)·H(2)O and [Mn(II)(pypzca)Cl(2)]HNEt(3) show that each of the (pypzca)(-) ligands binds in a meridional fashion via the N(3) donors. In the first three complexes, two such ligands are bound such that the 'spare' pyrazine nitrogen atoms are positioned approximately orthogonally to one another and also to the imide oxygen atoms. In MeCN the [M(II/III)(pypzca)(2)](0/+) complexes, where M = Ni, Co or Fe, exhibit one reversible metal based M(II/III) process and two distinct, quasi-reversible ligand based reduction processes, the latter also observed for M(II) = Zn. [Mn(II)(pypzca)Cl(2)]HNEt(3) displays a quasi-reversible oxidation process in MeCN, along with several irreversible processes. Both copper(II) complexes show only irreversible processes. Variable temperature magnetic measurements show that [Fe(III)(pypzca)(2)]ClO(4) undergoes a gradual spin crossover from partially high spin at 298 K (3.00 BM) to fully low spin at 2 K (1.96 BM), and that [Co(II)(pypzca)(2)] remains high spin from 298 to 4 K. All of the complexes are weakly coloured, other than [Fe(II)(pypzca)(2)] which is dark purple and absorbs strongly in the visible region.  相似文献   

19.
The structural and magnetic properties of the tris-dithiooxalato salts, A[M(II)Cr(C(2)S(2)O(2))(3)], have been investigated with A(+) = PPh(4)(+), N(n-C(n)()H(2)(n)()(+1))(4)(+), with n = 3-5, where M(II) is Mn, Fe, Co, and Ni. With the exception of A[MnCr(C(2)S(2)O(2))(3)], all the salts are ferromagnets with Curie temperatures, T(c), between 5 and 16 K. In contrast to the corresponding oxalates which are ferromagnetic, the A[MnCr(C(2)S(2)O(2))(3)] compounds are paramagnetic above 2 K. Powder neutron diffraction studies of d(20)-PPh(4)[FeCr(C(2)S(2)O(2))(3)] indicate that no structural phase transitions occur between 2.4 and 285 K and that the coefficient of linear expansion is four times larger for the c-axis than for the a-axis. The crystal structure refined from powder neutron diffraction data confirms the honeycomb layer arrangement observed in the related bimetallic tris-oxalate salts. The M?ssbauer spectra reveal that the iron(II) in PPh(4)[FeCr(C(2)S(2)O(2))(3)] is coordinated mainly to six oxygen atoms of the dithiooxalato ligand but with a minor component of sulfur coordination that increases with aging of the sample; the iron(II) is high-spin in both cases. Powder neutron diffraction profiles of d(20)-PPh(4)[FeCr(C(2)S(2)O(2))(3)] below T(c) show magnetic intensity with a q = 0 propagation vector, confirming the presence of ferromagnetic order.  相似文献   

20.
The iron mixed-valence complex (n-C(3)H(7))(4)N[Fe(II)Fe(III)(dto)(3)] exhibits a novel type of phase transition called charge-transfer phase transition (CTPT), where the thermally induced electron transfer between Fe(II) and Fe(III) occurs reversibly at ~120 K, in addition to the ferromagnetic phase transition at T(C) = 7 K. To investigate the mechanism of the CTPT, we have synthesized a series of magnetically diluted complexes (n-C(3)H(7))(4)N[Fe(II)(1-x)Zn(II)(x)Fe(III)(dto)(3)] (dto = C(2)O(2)S(2); x = 0-1), and carried out magnetic susceptibility and dielectric constant measurements and (57)Fe M?ssbauer spectroscopy. With increasing Zn(II) concentration (x), the CTPT is gradually suppressed and disappears at x ≈ 0.13. On the other hand, the ferromagnetic transition temperature (T(C)) is initially enhanced from 7 K to 12 K between x = 0.00 and 0.05, despite the nonmagnetic nature of Zn(II) ions, and then it decreases monotonically from 12 K to 3 K with increasing Zn(II) concentration. This anomalous dependence of T(C) on Zn(II) concentration is related to a change in the spin configuration of the ferromagnetic state caused by the partial suppression of the CTPT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号