首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
This article proposes a method to quantify the polymerization kinetics of ethylene and α‐olefins with commercial TiCl4/MgCl2 Ziegler–Natta catalysts. The method determines the leading apparent polymerization kinetic constants for each active site in a Ziegler–Natta catalyst by simultaneously fitting the instantaneous polymerization rate, cumulative polymer yield, and polymer molecular weight distribution measured at different times during a series of semi‐batch polymerization experiments. This approach quantifies the behavior of olefin polymerization with multisite catalysts using the least number of adjustable parameters needed to consistently model polymerization kinetics and polymer microstructural data.

  相似文献   


2.
Two artificial neural network models (forward and inverse) are developed to describe ethylene/1‐olefin copolymerization with a catalyst having two site types using training and testing datasets obtained from a polymerization kinetic model. The forward model is applied to predict the molecular weight and chemical composition distributions of the polymer from a set of polymerization conditions, such as ethylene concentration, 1‐olefin concentration, cocatalyst concentration, hydrogen concentration, and polymerization temperature. The results of the forward model agree well with those from the kinetic model. The inverse model is applied to determine the polymerization conditions to produce polymers with desired microstructures. Although the inverse model generates multiple solutions for the general case, unique solutions are obtained when one of the three key process parameters (ethylene concentration, 1‐olefin concentration, and polymerization temperature) is kept constant. The proposed model can be used as an efficient tool to design materials from a set of polymerization conditions.

  相似文献   


3.
In this article a systematic method is proposed to deconvolute the time‐dependent molecular weight distributions (MWD) and average comonomer fraction profiles of ethylene/1‐olefin copolymers made with heterogeneous Ziegler–Natta catalysts. These distributions with a high‐temperature gel permeation chromatography equipped with an infrared detector at four different polymerization times have been measured and used this information to infer how the fractions of polymer made on each site type varied with polymerization time. The model estimates here the minimum number of active site types needed to describe these copolymers, the MWD of polymer populations made on each site type, and their average comonomer fractions. This method is useful to quantify the microstructure of olefin copolymers made with multiple site type catalysts using the least number of adjustable parameters.

  相似文献   


4.
A novel vanadium‐modified (SiO2/MgO/MgCl2)·TiClx Ziegler–Natta ethylene polymerization catalyst with much better catalytic performance is successfully developed. The catalyst is prepared by co‐impregnation of aqueous solution of water‐soluble magnesium and vanadium compounds on SiO2, and a supported thin layer of magnesium and vanadium oxides is formed over the surface of SiO2 after high temperature calcination in dry air, followed by further reaction with titanium tetrachloride to synthesize the magnesium dichloride carrier in situ and to support the titanium species simultaneously. By characterization of the catalysts and the polymers and investigation of the polymerization behaviors, it is found that compared with the original (SiO2/MgO/MgCl2)·TiClx ZN catalyst, the introduction of vanadium species induce improved catalytic performance with 27% higher activity, 48% higher hydrogen response, and 60% higher 1‐hexene incorporation ability with better short chain branch distribution.

  相似文献   


5.
The present article reveals important roles of metal alkyl activators in tuning the performance of the Phillips catalyst in ethylene polymerization. The addition of aluminum alkyl aids the activation of the catalyst, while excess addition leads to the loss of the activity. The balance between the activation and deactivation depends on the type of employed aluminum alkyl, and tri‐n‐octylaluminum offers the most efficient catalyst usage by preferentially suppressing the deactivation. The passivation of aluminum trialkyl with a hindered phenol mildens not only the deactivation but also chain transfer reactions, leading to an increment of high molecular weight fractions.

  相似文献   


6.
Chain‐shuttling polymerization with dual catalysts has introduced a new class of polyolefins called olefin block copolymers (OBCs). A dynamic Monte Carlo model to describe the kinetics of chain‐shuttling copolymerization in a semi‐batch reactor is developed, and used it to study how the microstructure of OBCs with different numbers of blocks per chain evolves during polymerization. The model also describes how chain‐shuttling rate constants and concentration of chain‐shuttling agent affect populations of OBCs with different numbers of blocks per chain. These model predictions are useful to make OBCs with precisely designed microstructures.

  相似文献   


7.
Polymer microgels with sizes of some tens to hundreds of micrometers can be formed with exquisite control by droplet‐based microfluidic templating. This study presents a systematic assessment of the effect of the premicrogel droplet size on the ability of production of such microgels. The focus is on two popular acrylamide‐derivatives at a fixed monomer concentration and external polymerization temperature. An exponential dependence of the success of droplet gelation on the droplet size is found, which can be rationalized in view of the balance between production and transfer of heat within and from the droplets on basis of a simple Arrhenius argument.

  相似文献   


8.
A new way to fabricate monodisperse polymer particles in a microfluidic device without UV‐light and without the need for high temperatures is described in this article. By applying an activator regeneration by electron transfer ‐ atom transfer radical polymerization (ARGET‐ATRP) initiator system in a co‐capillary microfluidic setup and by separating the monomer mixture in an initiator and a catalyst phase, a fast polymerization of the droplets at low temperature without premature curing and thus clogging of the capillaries can be achieved. The influence of the flow rates on the particle sizes and their polydispersity as well as the controlled character of the polymerization are investigated. The particle size is well adjustable, but the reaction is not controlled due to the high radical concentration needed for rapid polymerization. In addition, particles with incorporated UV‐dyes are produced as a proof of concept at low temperature.

  相似文献   


9.
Reversible‐deactivation radical polymerization (RDRP) techniques have received lots of interest for the past 20 years, not only owing to their simple, mild reaction conditions and broad applicability, but also their accessibility to produce polymeric materials with well‐defined structures. Modeling is widely applied to optimize the polymerization conditions and processes. In addition, there are numerous literatures on the kinetic and reactor models for RDRP processes, which show the accessibility on polymerization kinetics insight, process optimization, and controlling over chain microstructure with predetermined molecular weight and low dispersity, copolymer composition distribution, and sequence distribution. This review highlights the facility of the method of moments in the modeling field and presents a summary of the present state‐of‐the‐art and future perspectives focusing on the model‐based RDRP processes based on the method of moments. Summary on the current status and challenges is discussed briefly.

  相似文献   


10.
Computational fluid dynamics (CFD) is used to study the gas–particle heat transfer in gas‐phase olefin polymerizations. Particularly, the effects of particle rotation on the gas–particle heat transfer coefficient and internal particle temperatures are evaluated, showing that particle rotation can exert a significant impact on observed temperature profiles, so that this effect should not be neglected during detailed CFD process simulations. As a consequence, particle rotation can lead to particle cooling and development of spherical gradient symmetry, validating the use of simpler modeling schemes that are based on reaction–diffusion in symmetrical spherical geometry.

  相似文献   


11.
The present work describes a kinetic approach which is able to predict how the internal surface area of polymer particles evolve during suspension copolymerization in the presence of porogen. For such a purpose, the concept of elementary gel structures has been introduced by modeling their surface area through the numerical fractionation technique. Thus, variables such as diluents composition, divinyl monomer concentration, and dilution degree could be assessed in the simulations. The present mathematical model is validated by using different experimental data from literature and a fair agreement is reached. Furthermore, the developed model is also capable of predicting the most significant copolymerization variables, e.g., conversion rate, concentration of species, and average molecular weights.

  相似文献   


12.
Various MgCl2‐supported Ziegler–Natta (ZN) catalysts are synthesized with the intention to influence polymerization performance and 1‐butene incorporation in an ethylene copolymer. Modifications are introduced during different steps in the synthesis process, namely support preparation, titanation, and catalyst workup. While multiple different effects are observed upon modification, heat treatment during titanation shows the greatest impact. Increasing the heat‐treatment temperature increases polymerization activity. More importantly, the 1‐butene distribution can be shifted toward a more homogeneous profile. The amount of 1‐butene incorporated is similar to both for short‐ and for very long‐chain molecules. This behavior has so far been known only from metallocene‐based polyethylene and suggests that active sites are distributed more homogeneously in the ZN catalyst.

  相似文献   


13.
The model and methodology for estimating diffusion‐controlled rate coefficients for the methyl methacrylate (MMA) polymerization system is extended to the vinyl acetate (VAc) case. Comparison of the kinetic behavior and termination rate coefficients (kt) of both monomers suggests that at low conversions the termination reaction is controlled by the chemical step, whereas at moderate and high conversions it is controlled by the diffusive step which in turn is determined by the segmental diffusion of the long radicals and not by the center of mass diffusion of short radicals. It is found that, for most of the conversion range, diffusion coefficient for VAc is lower than the one for MMA notwithstanding that ktVAc > ktMMA. An explanation of this apparent inconsistency on the base of the model results and in terms of segmental mobility is proposed.

  相似文献   


14.
Phillips catalyst is one of the most significant industrial ethylene polymerization catalysts. Chemical modifications have been carried out to tune the Phillips catalyst performance and improve the polyethylene properties. After the modification of the catalyst by fluorine, the polyethylene product with higher molecular weight (MW) and narrower molecular weight distribution (MWD) is suitable for producing automobile fuel tanks. Vanadium containing Phillips catalyst enhances α‐olefin incorporation and MW regulation. In present work, fluorine modified and unmodified chromium–vanadium (Cr–V) bimetallic catalysts are prepared and explored. Compared with the fluorine‐free catalyst, the activities of F‐modified bimetallic catalysts slightly decrease with the increasing MW of the product and the hydrogen response increases slightly. Due to the synergistic effect of the chromium, vanadium and fluorine on the silica gel support, the short‐chain branch distribution (SCBD) of copolymers from F‐modified Cr–V bimetallic catalyst (Cr–V–F)600 is more beneficial than that of Cr–V bimetallic catalyst (Cr–V)600 and F‐modified Cr–V bimetallic catalyst (Cr–V–F)500. The fluorination of Cr–V bimetallic catalysts has not only preserved the high polyethylene activity of bimetallic active sites but also produced the advantage of the high MW ability from fluorine.

  相似文献   


15.
Polyolefins (POs) are the largest polymer product in the world. The innovation in converting commodity olefin monomers to highly value added high‐performance POs has been and will continue to be a major theme in both academic research and industry practice. The excellent properties of POs can be achieved through precise engineering of their chain architectures, which largely involves control of the chain branching structures. Long‐chain branching is one of the most important parameters in the aspect of various chain branching structures. A huge amount of literatures have been reported to achieve better control of long‐chain branched structures over the last two decades. Recently, good effort has been made in reviewing all the major literatures and summarizing the catalytic systems and synthetic strategies for the controlled synthesis of long‐chain branched POs. This paper represents the first of the series, that is, controlled synthesis of long‐chain branched POs via single catalyst systems.

  相似文献   


16.
ArF candidate photoresist polymers have been synthesized by nitroxide mediated polymerization (NMP). Statistical copolymerizations of α‐gamma butyrolactone methacrylate, 3‐hydroxy‐1‐adamantyl methacrylate, and 2‐methyl 2‐adamantyl methacrylate with 5–10 mol% of controlling comonomers (i.e., styrene, p‐acetoxystyrene, 2‐vinyl naphthalene, acrylonitrile, and pentafluorostyrene), which are necessary for controlled polymerization of methacrylates by NMP with the unimolecular alkoxyamine initiator BlocBuilder, have been used. As little as 5 mol% controlling comonomer in the feed is demonstrated to be sufficient to produce linear evolution of number average molecular weight against conversion (X) up to X = 0.7 for relatively low target degrees of polymerization. All of the resulting copolymers have relatively low dispersities and show relatively low absorbance at 193 nm, comparable to other 193 nm candidate photoresists reported previously, with the exception of VN‐containing copolymer.

  相似文献   


17.
Strategies have been successfully developed for the monitoring of the homo and copolymerization of styrene and butyl acrylate in a miniemulsion system using near‐infrared (NIR) spectroscopy. Different concentrations of costabilizer, stearyl methacrylate, are tested to obtain the best stabilization condition. The spectral data are associated with the properties of the reaction medium, such as particle average diameter, conversion, number, and surface area of particles, through linear regression based on partial least squares. It is observed that the NIR spectrophotometer is sensitive to the dynamics of miniemulsion polymerization reactions, thus confirming the promising aspect of NIR technology for monitoring the latex properties.

  相似文献   


18.
SiO2‐supported Cr–V bimetallic catalyst can be used for producing bimodal polyethylene which can be applied for high‐performance pipe material. Alkyl aluminum are used to prereduce the bimetallic catalysts, and the effects of alkyl aluminum for the bimetallic catalyst are fully studied by catalyst characterization, polymerization kinetics, and the properties of polymer product by the comparison with the catalyst without prereduction. The result shows that the optimum polymerization activity is almost double after the catalyst is prereduced by triisobutylaluminum (TIBA), and the needed dosage of alkyl aluminum also is decreased significantly. The alkyl aluminum of the prereduced catalyst can also act as a chain transfer agent, significantly reducing the molecular weight of the polymer. The diethylaluminum chloride (DEAC) is mostly deactivating the Cr species during the ethylene polymerization. The synthesized catalysts, prereduced by TIBA, triethylaluminum (TEA), and DEAC, all exhibited good hydrogen response and comonomer interposition ability, which will be favorable for the further application of the bimetallic catalyst in the industrial field.

  相似文献   


19.
A kinetic model for the radical homopolymerization of acrylamide in aqueous solution is developed, incorporating propagation and termination rate coefficients as functions of monomer concentration and including the formation and reaction of midchain radicals based on the insights and measured rate coefficients from recent pulsed‐laser studies. The model successfully represents the batch conversion profiles measured using an in situ NMR technique between 40 and 70 °C with initial monomer concentrations of 5 to 40 wt%, as well as the associated polymer molar mass distributions. In particular, the model captures the decreased rate that occurs at lowered monomer concentrations as a result of the formation of less‐active midchain radicals by backbiting. Previous literature data are also well represented by the model.

  相似文献   


20.
In this work, a mathematical model is developed to characterize the batch atom transfer radical suspension polymerization (batch suspension ATRP). For the first time, the morphological and molecular properties of particles, as well as their dynamics in methyl methacrylate ATRP can be simultaneously simulated by solving the model that consists of ATRP kinetic equations, moment equations, a phase equilibrium equation for calculating equilibrium monomer distributions in various phases, and a particle population balance model. The proposed model is verified using the open experimental data. Based on the verified model, two key operating factors including the ratios of monomer to initiator and water to monomer are studied in order to investigate the batch suspension ATRP kinetics. In addition, the model is also used to predict the droplet/particle size distribution. The effects of breakage rate, coalescence rate, and agitation speed on the droplet volume density distribution and the Sauter mean diameter are discussed in details. The simulated results demonstrate that the coupled model can describe the batch suspension ATRP kinetics and its droplet kinetics.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号