首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 934 毫秒
1.
This study aim to synthesize new 1,3,4-oxadiazole derivatives incorporating mefenamic acid as promising α-glucosidase and urease inhibitors, potentially leading to the treatment of postprandial hyperglycemia as well as H. pylori related disorders. In this regards, we have designed a series of Mefenamic acid derivatives. The synthetic compounds were structurally elucidated through 1H NMR, 13C NMR and HR-EIMS analysis. The biological evaluation of these derivatives against α-glucosidase and urease enzyme depicted some novel derivatives with potent inhibition against the said enzymes. All the derivatives exhibited potent inhibition against α-glucosidase enzymes with IC50 ranging from 25.81 ± 1.63–113.61 ± 1.31 µM against standard drug acarbose (IC50 = 375.82 ± 1.76 µM) while with respect to urease these derivatives possessed inhibitory potential varied between IC50 = 8.04 ± 1.01–58.18 ± 1.03 µM against the standard thiourea (IC50 = 21.0 ± 1.76 µM). The cell viability results revealed that all of the derivatives were found least cytotoxic. Furthermore, molecular docking studies of the most potent derivatives identify number of key features involved in binding interactions between potential inhibitors and the enzyme's active site.  相似文献   

2.
This work has described the synthesis of novel class (125) of benzofuran based hydrazone. The hybrid scaffolds (125) of benzofuran based hydrazone were evaluated in vitro, for their urease inhibition. All the newly synthesized analogues (125) were found to illustrate moderate to good urease inhibitory profile ranging from 0.20 ± 0.01 to 36.20 ± 0.70 µM. Among the series, compounds 22 (IC50 = 0.20 ± 0.01 µM), 5 (IC50 = 0.90 ± 0.01 µM), 23 (IC50 = 1.10 ± 0.01 µM) and 25 (IC50 = 1.60 ± 0.01 µM) were found to be the many folds more potent than thiourea as standard inhibitor (IC50 = 21.86 ± 0.40 µM). The elevated inhibitory profile of these analogues might be due to presence of dihydroxy and flouro groups at different position of phenyl ring B attached to hydrazone skeleton. These dihydroxy and fluoro groups bearing compounds have shown many folds better inhibitory profile through involvement of oxygen of dihydroxy groups in hydrogen bonding with active site of enzymes. Various types of spectroscopic techniques such as 1H-, 13C- NMR and HREI-MS spectroscopy were used to confirm the structure of all the newly developed compounds. To find SAR, molecular docking studies were performed to understand, the binding mode of potent inhibitors with active site of enzymes and results supported the experimental data.  相似文献   

3.
This research work represents a synthetic approach for the development of hybrids derivatives of oxadiazole-based benzothiazole (117) and diversity in derivatives was achieved using variety of aryl ring of S-substituted benzothiazole to see the effect on the biological activities. All the synthesized derivatives were evaluated for their in vitro α-glucosidase and urease inhibitory potential. The α-glucosidase and urease inhibition profile of the new derivatives represents moderate to good inhibitory potential with IC50 values ranging from 4.60 ± 1.20 µM to 48.40 ± 7.70 µM (α-glucosidase) and 8.90 ± 2.80 to 57.30 ± 7.70 µM (urease) respectively. The results were compared to standard acarbose (38.60 ± 4.50 µM) and thiourea (58.70 ± 6.80 µM) drugs respectively. Among the synthesized series, the analogs 1 having IC50 values of and 4.60 ± 1.20 (α-glucosidase), 8.90 ± 2.80 (urease) and 2 with IC50 values of 5.60 ± 1.60 (α-glucosidase) and 10.90 ± 2.10(urease) were found to be significantly active against targeted α-glucosidase and urease enzymes. The structure of all the newly synthetics scaffolds were confirmed by using different types of spectroscopic techniques such as HREI-MS, 1H- and 13C- NMR spectroscopy. The molecular docking studies of the synthesized derivatives showed good correlations with the experimental findings. The binding modes of active compounds and their interactions with active site residues revealed them as possible anti-diabetics and anti-urease leads. The degree of activity and docking studies displayed by the novel innovative structural hybrids of oxadiazole-based benzothiazole moieties make these compounds new active leads and promising candidates for the development of anti-diabetics and anti-urease agents.  相似文献   

4.
The present study comprised of the synthesis of dicyanoaniline derivatives of pyridine, thiophene, furan, and substituted phenyl 129. All synthetic derivatives were evaluated for their potential to inhibit α-amylase and α-glucosidase enzymes. The synthesized compounds are classified into three categories A, B, and C based on variable substituents at R1 and R2, and the structure–activity relationship was discussed accordingly. Amongst twenty-nine derivatives, 129, five compounds 2, 9, 18, 23, and 24 displayed excellent inhibition against α-amylase and α-glucosidase enzymes with the IC50 values ranging between 20.33 ± 0.02–25.50 ± 0.06 µM and 21.01 ± 0.12–27.75 ± 0.17 µM, respectively, while other compounds showed moderate to weak inhibition against both enzymes. Acarbose was used as the positive control in this study. The enzyme kinetic studies showed non-competitive and un-competitive types of inhibition mechanism against α-amylase and α-glucosidase enzymes, respectively. In silico studies have demonstrated the involvement of these molecules in numerous binding interactions within the active site of the enzyme.  相似文献   

5.
《Arabian Journal of Chemistry》2020,13(12):9145-9165
A series of novel 3, 4-dihydro-3-methyl-2(1H)-quinazolinone derivatives with substituted amine moieties (113) and substituted aldehyde (S) were designed and synthesized by a reflux condensation reaction in the presence of an acid catalyst to get N-Mannich bases. Mannich bases were evaluated pharmacologically for their antioxidant, α-amylase enzyme inhibition, antimicrobial, cell cytotoxicity and anti-inflammatory activities. Most of the compounds exhibited potent activities against these bioassays. Among them, SH1 and SH13 showed potent antioxidant activity against DPPH free radical at IC50 of 9.94 ± 0.16 µg/mL and 11.68 ± 0.32 µg/mL, respectively. SH7, SH10 and SH13 showed significant results in TAC and TRP antioxidant assays, comparable to that of ascorbic acid. SH2 and SH3 showed potent activity in inhibiting α-amylase enzyme at IC50 of 10.17 ± 0.23 µg/mL and 9.48 ± 0.17 µg/mL, respectively, when compared with acarbose (13.52 ± 0.19 µg/mL). SH7 was the most active against gram-positive and gram-negative bacterial strains, SH13 being the most potent against P. aeruginosa by inhibiting its growth up to 80% (MIC = 11.11 µg/mL). SH4, SH5 and SH6 exhibited significant activity against some fungal strains. Among the thirteen synthesized compounds (SH1-SH13), four were screened out based on the results of brine shrimp lethality assay (LD50) and cell cytotoxicity assay (IC50), to determine their anti-cancer potential against Hep-G2 cells. The study was conducted for 24, 48, and 72 h. SH12 showed potent results at IC50 of 6.48 µM at 72 h when compared with cisplatin (2.56 µM). An in vitro nitric oxide (NO) assay was performed to shortlist compounds for in vivo anti-inflammatory assay. Among shortlisted compounds, SH13 exhibited potent anti-inflammatory activity by decreasing the paw thickness to the maximum compared to the standard, acetylsalicylic acid (ASA).  相似文献   

6.
Alzheimer’s disease (AD) is a neurodegenerative disorder and cholinesterase (ChE) enzymes are considered as crucial targets for the treatment of AD. Herein, a series of heteroaryl substituted imidazole derivatives (5a-5x) was prepared using amino acid catalyzed, one-pot facile synthetic approach. In this context, the catalytic potentials of different amino acids were investigated and 15 mol% of glutamic acid was identified as the most suitable catalyst to obtain the target products in good yields up to 90 %. These structurally exciting heterocyclic hybrids were screened against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes. This series displayed moderate to excellent inhibitory potential against AChE with IC50 values > 25 µM and the most active compound was 3-(4-(1-(3,5-dimethylphenyl)-4,5-diphenyl-1H-imidazol-2-yl)-1-phenyl-1H-pyrazol-3-yl)–2H-chromen-2-one (5x) with IC50 value of 25.83 ± 0.25 µM.This inhibitory potential was attributed to hydrophobicity as the major contributory factor. The most potent compound against BChE was 1,3-diphenyl-4-(1,4,5-triphenyl-1H-imidazol-2-yl)-1H-pyrazole (5a) with IC50 value of 0.35 ± 0.02 µM followed by other potent compounds 5p, 5 m, 5x, 5b, 5c, 5e and 5f with IC50 values < 10 µM. SAR studies further revealed that coumarinyl moiety at R1 position in the imidazolylpyrazole skeleton significantly improved the overall cholinesterase inhibitory potential. However, a simple phenyl ring attached at this R1 site was highly effective and selective for BChE inhibition (5a) over AChE. Docking data also demonstrated the interaction of 5x and AChE with a docking score of 7564 and atomic contact energy (ACE) value of –291.90 kcal/mol whereas docking score for 5a against BChE was 7096 with ACE value of –332.95 kcal/mol. The results altogether suggest further investigations of the heteroaryl substituted imidazole core skeleton in search of potential leads towards designing of new anti-cholinesterase drugs for the treatment of AD.  相似文献   

7.
Here, we discuss the synthesis of thiosemicarbazide derivatives based on benzoxazole. These compounds were obtained via sequence of reactions. The targeted products were confirmed using a number of spectroscopic methods, including NMR (1H and 13C) and EI-MS. After spectral confirmation all the synthesized compounds were evaluated for urease and β-Glucuronidase inhibitory activity in order to explore their biological significances in the presence of standard drug thiourea (IC50 = 21.86 ± 0.40) and D-saccharic acid 1,4-lactone (IC50 value 22.00 ± 1.10 µM) respectively. Among the evaluated series, compounds 14 and 15 (1.10 and 0.01 and 2.20 and 0.60) were shown to have slightly greater potential than standard drugs. Anti-nematodal activity was also employed to explore the cytotoxic nature of synthesized analogs. In order to establish the binding relationship with enzyme active sites, molecular docking experiments were done and directions for compound modification based on SAR features were addressed. In addition, ADMET prediction study also investigated to found drug like properties of the potential analogs.  相似文献   

8.
9.
In the present study, twenty (20) structural variants of nitrofurazone were synthesized based on BIODS (Biology-oriented drug synthesis) approach. The structure elucidation of the synthetic molecules (120) was carried out using different spectroscopic techniques, and their α-glucosidase inhibitory activity was also determined. The synthetic molecules 120 exhibited good α-glucosidase inhibition than the parent, nitrofurazone. Four compounds 2, 4, 6, and 7 showed potential inhibition against α-glucosidase with IC50 values ranging between 0.63 ± 0.25–1.29 ± 0.46 µM as compared to the standard acarbose (IC50 = 2.05 ± 0.41 µM). Nevertheless, compounds 15 (IC50 = 0.74 ± 0.12 µM), and 19 (IC50 = 0.54 ± 0.3 µM) also displayed good α-glucosidase inhibition and compound 19 was the most active compound of the series. Kinetic study of the active compounds 7 and 19 was also carried out to confirm the mode of inhibition. The binding interactions of the most active compounds within the active site of enzyme were determined by molecular docking. Moreover, molecular dynamic simulation of compound 19 was also performed in order to determine the stability of the overall complex (α-glucosidase + c19) in an explicit watery environment. The synthetic molecules were predicted as non-cytotoxic, however, seven compounds 1, 3, 4, 9, 10, 11, and 12 were predicted as carcinogenic.  相似文献   

10.
In an attempt to rationalize the search for new potential anti-inflammatory and anti-infection agents, a new series of 1,4-and 1,5-disubstituted 1,2,3-triazoles linked benzoxazine conjugates have been synthesized via “Click Chemistry” reaction, were designed, synthesized and characterized by means of spectral and elemental data. The newly synthesized compounds have been assessed for their antimicrobial, antioxidant and anti-inflammatory potential. Results revealed that all synthesized compounds display superior activities to the standard drug against different bacterial strains especially S. aureus, M. luteus, and P. aeruginosa, with good to moderate activity towards the tested E. coli bacteria, in respect to the commercial antibiotic, tetracycline. Moreover, the antifungal activity was screened against C. albicans and C. krusei yeasts and results demonstrate potent activity as compared to the standard drug, ampicillin. The antioxidant activity was evaluated using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radical scavenging assays, whose results indicate that analogues 4a (IC50 1.88 ± 0.07 µM and 2.17 ± 0.02) followed by 4b (IC50 2.19 ± 0.09 µM and 2.38 ± 0.43 µM), 4d (IC50 2.30 ± 0.01 µM and 4.07 ± 0.57 µM), and 4f (2.98 ± 0.02 µM and 3.80 ± 0.01 µM), respectively, exhibited the strongest activity when compared to the standard reference, butylated hydroxytoluene (BHT) (3.52 ± 0.08 µM and 4.64 ± 0.11 µM). In addition, their anti-inflammatory activity was assessed using the xylene-induced ear edema standard technique and the results demonstrated the potency of 4a, 4b and 4d as excellent anti-inflammatory agents. Preliminary structure–activity relationship studies (SARs) provide those biological activities can be modulated by the presence of unsubstituted aromatic ring as well as the position of substituents on the phenyl moiety via electron withdrawing groups (EWGs) or electron donating groups (EDGs) effects. Docking studies on the most promising compounds 4a, 4b, and 4d into the active sites of S. aureus tyrosyl-tRNA synthetase, Candida albicans N-Myristoyltransferase, Human COX-2 enzyme, and Human Peroxiredoxin 5 revealed good binding profiles with the target proteins. The interaction's stability was further assessed using a conventional atomistic 100 ns dynamic simulation study. Hence, our results recommended the rationalized targets 4a, 4b and 4d, to be promising lead candidates for the discovery of novel dual anti-inflammatory and anti-infection agents.  相似文献   

11.
In the present study novel heterocyclic tetrads containing furan, pyrazoline, thiazole and triazole (or oxadiazole) (1, 2, 3, 4a-e and 5a-e) were designed and synthesized and investigated for their antimicrobial (against selected bacteria and fungi) and anticancer potential. The molecules 4e and 5e containing 4-fluoro phenyl and 4-fluoro benzyl substituents showed promising antimicrobial (antibacterial and antifungal activities with MICs ranging between 0.5 and 8 µg/mL. Compounds 3 exhibited potent anticancer activity with an IC50 value of 0.49 ± 1.45 µM against the human gastric cancer cell line (BGC-823) whereas compound 4e displayed an IC50 value of 0.65 ± 0.53 µM against breast cancer (MCF-7) cell line respectively. All compounds showed selective toxicity against the cancer cell lines compared to human normal liver cell lines. Molecular docking studies of the most potent compounds (3 and 4e) against selected microbial and cancer proteins revealed the crucial binding interactions of the potent compounds with the target enzymes. Compounds 3 and 4e are promising lead molecules to be developed as potential drug candidates.  相似文献   

12.
A series of 28 novel naproxen derivatives (4a-f, 5a-f, 6a-d, 7a-f, and 8a-f) have been designed, synthesized, and characterized. The synthesized derivatives were assessed as dual inhibitors for 15-lipoxygenase (LOX) and α-glucosidase enzymes and checked for cytotoxicity and ADME studies. The inhibitory potential of naproxen derivatives for 15- LOX was checked through two different methods, the UV absorbance method and the Chemiluminescence method. The biological activities result revealed that through the UV absorbance method, compound 4f (IC50 21.31 ± 0.32 µM) was found potent among the series followed by compounds 4e (IC50 36.53 ± 0.51 µM) and 4d (IC50 49.62 ± 0.12 µM) against standard drug baicalein (IC50 22.46 ± 1.32 µM) and quercetin (IC50 2.34 ± 0.35 µM), while through chemiluminescence method tested compounds showed significant 15-LOX inhibition at the range of IC50 1.13 ± 0.62 µM ?123.47 ± 0.37 µM. Among these compounds, 4e (IC50 1.13 ± 0.62 µM), 5b (IC50 1.19 ± 0.43 µM), 8c (IC50 1.23 ± 0.35 µM) were found most potent inhibitors against quercetin (IC50 4.86 ± 0.14 µM), and baicalein (IC50 2.24 ± 0.13 µM). The chemiluminescence method was found more sensitive than the UV method to identify 15-LOX inhibitors. Interestingly all synthesized compounds showed significant α-glucosidase inhibitory activity (IC50 1.0 ± 1.13 µM ? 367.2 ± 1.23 µM) even better than the standard drug acarbose (IC50 375.82 ± 1.76 µM), while compound 6c (IC50 1.0 ± 1.13 µM) and 7c (IC50 1.1 ± 1.17 µM) were found most potent compounds among the series even many folds better than the standard drug. The cell viability results showed that all compounds were less toxic, maintained cellular viability at the range of 99.8 ± 1.3% to 63.7 ± 1.5%. ADME and molecular docking studies supported drug-likeness and binding interactions of compounds with the targeted enzymes.  相似文献   

13.
A series of natural product (2-phenyethyl)chromone analogues (334) were designed, synthesized, and screened for their α-glucosidase inhibitory activity. The results indicated that some of the synthesized derivatives displayed inhibitory activities against α-glucosidase with IC50 values ranging from 11.72 ± 0.08 to 85.58 ± 2.30 μM when compared to the standard drug acarbose (IC50 = 832.22 ± 2.00 μM). Among them, compound 4 with a hydroxyl group at the 7-position of chromone and a chloro group at the 4-position of the benzene ring, displayed the most significant inhibitory activity with the IC50 value of 11.72 ± 0.08 μM. The inhibitory mechanism of compound 4 against α-glucosidase was studied by enzyme kinetic, circular dichroism spectra, fluorescence quenching, and molecular docking. Sucrose loading test in vivo further demonstrated that it could decrease blood glucose levels after sucrose administration in normal Kunming mice. In vitro cytotoxicity showed that 4 exhibited low cytotoxicity against normal human cell lines. The ADME study suggested that all compounds are likely to be orally active as they obeyed Lipinski’s rule of five. In summary, our studies showed that these derivatives are a new class of α-glucosidase inhibitors.  相似文献   

14.
Increase in the number of infections caused by pathogenic microbes in cancer patients has prompted the searcher to invest in the development of agents having dual anticancer and antimicrobial properties. The present study is concerned with synthesis and screening for anticancer and antimicrobial activity of a series of 5-hydrazinyl-2-(2-(1-(thien-2-yl)ethylidene)hydrazinyl)thiazole derivatives. The structure elucidation of the synthesized hydrazinyl thiazole derivatives was illustrated by spectroscopic and elemental analysis. All the newly synthesized compounds 5a-p were evaluated for in-vitro cytotoxic activity against breast carcinoma (MCF-7 cell line), hepatocellular carcinoma (HePG-2) and colorectal cancer (HCT-116) cell lines using MTT assay method. Compounds 5 g, 5h showed broad spectrum activity against three cancer cell lines with IC50 ranged from 3.81 to 11.34 µM in compared to the reference drug Roscovitine (IC50 = 9.32 to 13.82 µM), while compounds 5 l and 5 m were found to be more selective against HePG-2 and HCT-116 cell line (IC50 = 9.29 and 8.93 µM respectively) and compound 5j was more selective against HePG-2 and MCF-7 cell lines (IC50 = 6.73 and 10.87 µM respectively). The inhibitory activity of the most promising compounds was tested against the EGFR and ARO enzymes and were further tested for apoptosis and Annexin V/PI staining. The results of enzyme-based tests revealed that the tested compound 5j has a dual inhibitory effect on the EGFR and ARO enzymes with IC50 = 82.8 and 98.6 nM respectively in compared to the reference drugs Erlotinib and Letrozole (IC50 = 62.4 and 79 nM respectively). Furthermore, the majority of the tested hydrazinyl thiazole derivatives exhibited significant antimicrobial activity against the used pathogenic microbes species. Compounds 4b, 5h, 5j and 5 m exerted a good antibacterial and antifungal activity against all tested pathogenic microbes. Therefore, it was concluded that compounds 5 h, 5j and 5 m proved to possess dual anticancer and antimicrobial agent and may serves as a useful lead compounds in search for further modification or derivatization to give more potent and selective agents.  相似文献   

15.
In this study, a novel series of isoxazole-naphthalene derivatives as tubulin polymerization inhibitors were designed, synthesized and evaluated for their anti-proliferative activities against human breast cancer cell line MCF-7. Most of the synthesized compounds exhibited moderate to potent antiproliferative activity (IC50 < 10.0 μM), as compared to cisplatin (15.24 ± 1.27 μM). Among them, compound 5j containing 4-ethoxy substitution at phenyl ring was found to be the most active compound with IC50 value of 1.23 ± 0.16 μM. Mechanistic studies revealed that compound 5j arrested cell cycle at G2/M phase and induces apoptosis. Furthermore, in vitro tubulin polymerization assay showed that compound 5j displayed better inhibition activity on tubulin polymerization (IC50 = 3.4 μM) than colchicine (IC50 = 7.5 μM). Molecular docking study also revealed that compound 5j binds to the colchicine binding site of tubulin.  相似文献   

16.
Medicinal plants from Chad grow under special climatic conditions in between the equatorial forest of Central Africa and the desert of North Africa and are understudied. Three medicinal plants from Chad (T. diversifolia, P. Biglobosa and C. Febrifuga) were evaluated for their phenolic composition, antioxidant and enzyme inhibition activities. The total phenolic composition varied from 203.19 ± 0.58 mg GAE/g DW in the ethyl acetate extract of P. biglobosa, to 56.41 ± 0.89 mg GAE/g DW in the methanol extract of C. febrifuga while the total flavonoid content varied from 51.85 ± 0.91 mg QE/g DW in the methanol extract of P. biglobosa to 08.56 ± 0.25 mg QE/g DW in the methanol extract of C. febrifuga. HPLC-DAD revealed that rutin, gallic acid and protocatechuic acid were the most abundant phenolics in T. diversifolia, P. Biglobosa and C. Febrifuga respectively. The antioxidant activity assayed by five different methods revealed very good activity especially in the DPPH?, ABTS?+ and CUPRAC assays where the extracts were more active than the standard compounds used. Good inhibition was exhibited against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) with methanol (IC50: 15.63 ± 0.72 µg/mL), ethyl acetate (IC50: 16.20 ± 0.67 µg/mL) extracts of P. biglobosa, and methanol (IC50: 21.53 ± 0.65 µg/mL) and ethyl acetate (IC50: 30.81 ± 0.48 µg/mL) extracts of T. diversifolia showing higher inhibition than galantamine (IC50: 42.20 ± 0.44 µg/mL) against BChE. Equally, good inhibition was shown on α-amylase and α-glucosidase. On the α-glucosidase, the ethyl acetate (IC50 = 12.47 ± 0.61 µg/mL) and methanol extracts (IC50 = 16.51 ± 0.18 µg/mL) of P. biglobosa showed higher activity compared to the standard acarbose (IC50 = 17.35 ± 0.71 µg/mL) and on α-amylase, the ethyl acetate (IC50 = 13.50 ± 0.90 µg/mL) and methanol (IC50 = 18.12 ± 0.33 µg/mL) extracts of P. biglobosa showed higher activity compared to acarbose (IC50 = 23.84 ± 0.25 µg/mL). The results indicate that these plants are good sources of antioxidant phenolics and can be used to manage oxidative stress linked illnesses such as Alzheimer’s disease and diabetes.  相似文献   

17.
Hybrid analogs containing molecules are always the choice of different synthetic researcher due to their diverse biological applications and significantly more efficient. Heterocyclic being a good inhibitors against varied disease are most commonly used in drug designing and development. The current study also addressed the synthesis of pyrimidine-based thiazolidinone derivatives (113) using stepwise processes and their structure was confirmed using various characterization techniques such as 1HNMR, 13CNMR, and HREI-MS. Furthermore, the biological significances of the synthesized scaffolds were also explored and proved to be as anti-urease and anti-cancer moieties. Their inhibitory potentials were determined using the minimum inhibitory concentration (MIC) in the presence of their standard drugs, Thiourea (IC50 = 8.20 ± 0.20 µM) and Tetrandrineb (IC50 = 12.30 ± 0.10 µM) respectively. Structure activity relationship (SAR) was established for all the synthesized scaffolds and compared their inhibitory potentials in which scaffolds 3 (IC50 = 2.30 ± 0.30 and 3.20 ± 0.50 µM), 6 (IC50 = 3.10 ± 0.20 and 6.20 ± 0.10 µM), 7 (IC50 = 3.20 ± 0.20 and 3.80 ± 0.30 µM) and 10 (IC50 = 4.20 ± 0.20 and 5.10 ± 0.30 µM) exhibited the most influential activity. These compounds were subsequently examined using molecular docking experiments, which evaluate the binding interaction of ligands with enzyme active sites.  相似文献   

18.
A series of chalcone analogues (1–15) were synthesized by Claisen-Schmidt condensation in good yields (70–95%) and characterized by FT-IR, 1H NMR and mass spectral methods. Additionally, compounds 3 and 7 were characterized by 13C NMR. Antitubercular and antioxidant activities of the chalcones were evaluated by MABA and DPPH free radical assays. In MABA assay analogues 3 (MIC = 14 ± 0.11 µM) and 11 (MIC = 14 ± 0.17 µM) bearing fluorine and methoxy groups at para and meta positions were 1.8-times more active than the standard pyrazinamide (MIC = 25.34 ± 0.22 µM). The chalcone analogues such as compound 7 (IC50 = 4 ± 1 µg/mL) containing electron releasing groups such as OH at ortho position had slightly more antioxidant activity than Gallic acid (IC50 = 5 ± 1 µg/mL). The potential compounds 3, 7, 9 and 11 were less selective and toxic against human live cell lines-LO2. Further, molecular docking results of chalcones against anti-tubercular drug target isocitrate lyase (PDB ID: 1F8M) revealed that compound 3 and 11 shown least binding energies as ?7.6, and ?7.5 kcal/mol are in line with in vitro MABA assay, suggesting that these compounds 3 and 11 are strong inhibitor of isocitrate lyase. SwissADME programme estimated the drug likeliness properties of compounds 3, 7, 9 and 11. The lead molecules arisen through this study helps to develop new antitubercular and antioxidant agents.  相似文献   

19.
In this study, we aimed to (i) synthesize new 2-methylindole analogs containing various amino structures, pyrrolidine, piperidine, morpholine, and substituted phenyl groups through structural and molecular modifications, (ii) evaluate the pharmaceutical potential of 2-methylindole analogs via assessing enzyme inhibitory activity against glutathione S-transferase (GST), acetylcholinesterase (AChE), and butyrylcholinesterase (BChE), (iii) predict ADMET and pharmacokinetic properties of the synthesized 2-methylindole analogs, (iv) reveal the possible interactions between the synthesized 2-methylindole analogs with GST, AChE, and BChE enzymes using several molecular docking software. In vitro enzyme inhibition assays showed that the synthesized indole analogs exhibited moderate to good inhibitory activities against GST, AChE, and BChE enzymes. Briefly, the inhibitory activities of the analogs 4b and 4i against AChE, 4a and 4b against BChE, and analogs 1 and 4i against GST were detected to be higher or close to the standard inhibitor compounds. The analog 4b was detected to have the best inhibitory activity against both AChE and BChE enzymes with the lowest IC50 values as 0.648 µM for AChE and 0.745 µM for BChE. The analyses of enzyme inhibition relationship with the synthesized analogs could help to design new analogs for the inhibitors of cholinergic and glutathione pathways based on the indole derivatives.  相似文献   

20.
A new series of 2-phenyl-4,5,6,7-tetrahydro-1H-?indole derivatives as tubulin polymerization inhibitors were synthesized and evaluated for the anti-proliferative activities. All newly prepared compounds were tested for their antiproliferative activity in vitro on the human breast cancer cell line (MCF-7) and human lung adenocarcinoma cell line (A549). Among them, compound 7b with a 4-methoxyl substituent at the phenylhydrazone moiety exhibited the most potent anticancer activity against MCF-7 and A549 with IC50 values of 1.77 ± 0.37 and 3.75 ± 0.11 μM, respectively. Interestingly, 7b displayed significant selectivity in inhibiting cancer cells over LO2 (normal human liver cells). Further mechanism studies revealed that 7b significantly arrested cell cycle at G2/M phase and induced apoptosis in a dose-dependent manner. Additionally, 7b effectively inhibited tubulin polymerization with an inhibitory manner similar to that of colchicine. Furthermore, molecular docking study suggested that 7b had high binding affinities for the colchicine binding pocket of tubulin. Hence, this study demonstrates for the first time that tetrahydroindole can be used as a functional group for the design and development of new tubulin polymerization inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号