首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.

In this research, three different volume concentrations (??=?0.05, 0.1 and 0.2%) of Al2O3/water, CuO/water and Al2O3–CuO/water (50:50) nanofluids are prepared by adopting a two-step nanofluid preparation method. Al2O3 and CuO nanoparticles with the average diameter of 50 nm and 27 nm were dispersed in distilled water. The thermal conductivity and viscosity of prepared nanofluids are measured for different temperatures by using KD2 Pro thermal property analyzed and Brookfield viscometer, respectively. The effects of nanofluids on the thermal, electrical and overall efficiency of photovoltaic thermal (PVT) solar collector are also studied. The experimental results revealed that the thermal conductivity and viscosity increase with the increase in percentage volume concentration and viscosity decreases with the increase in temperature. Furthermore, the obtained maximum thermal and electrical efficiencies of a PVT solar collector for 0.2% volume concentration of hybrid nanofluids are 82% and 15%, respectively, at peak solar radiation. The highest overall efficiency of a PVT collector with .2% volume concentration of hybrid nanofluid was 97% at peak solar radiation. Results recommend that nanofluids can be used as a heat transfer in PVT solar collector.

  相似文献   

2.
A numerical simulation model for laminar flow of nanofluids in a pipe with constant heat flux at the wall has been built to study the effect of Reynolds number on heat transfer and pressure loss. The investigation was performed for metallic oxide and multi-oxide nanoparticles suspended in water. The thermal conductivity and dynamic viscosity were measured for a range of temperature (10–60 °C) and volume fraction of multi-oxide nanofluid. Comparison of the thermal conductivity for monocular oxide and multi-oxide nanofluids reveals a new way to control the enhancement in nanofluid conductivity. The numerical results obtained were compared with existing well-established correlations. The predictions of the Nusselt number for nanofluids are in agreement with the Shah correlation, and the deviation in the results is less than 1 %. It is found that the pressure loss increases with the Reynolds number, nanoparticle density, and volume fraction for multi-oxide nanoparticles. However, the flow demonstrates enhancement in heat transfer which improves with increasing Reynolds number of the flow.  相似文献   

3.
The comparative study on the thermo-physical properties of water-based ZnO nanofluids and Ag/ZnO hybrid nanofluids is reported in the present study. The outer surface of ZnO nanoparticles was modified with a thin coating of Ag nanoparticles by a wet chemical method for improved stability and heat transfer properties. The ZnO and Ag/ZnO nanofluids were prepared with varying volume concentration (??=?0.02–0.1%). The synthesized nanoparticles and nanofluids were characterized with different characterization methods viz., scanning electron microscopy, X-ray diffraction, dynamic light scattering, thermal conductivity measurement, and viscosity measurement. Results show that thermal conductivity of Ag/ZnO hybrid nanofluids is found to be significantly higher compared to ZnO nanofluids. The maximum thermal conductivity an enhancement for Ag/ZnO nanofluid (??=?0.1%) is found to 20% and 28% when it compared with ZnO nanofluid (??=?0.1%) and water, respectively.  相似文献   

4.
Microwave synthesis has been applied to prepare stable silver nanofluids in ethanol by reduction of AgNO3 with polyvinylpyrrolidone (PVP), used as stabilizing agent, having Ag concentrations of 1% by volume. The nanofluids were characterized by UV-vis spectroscopy, Fourier transform infrared, energy-dispersive X-ray spectroscopy, and transmission electron microscopy and systematically investigated for refractive index, electrical and thermal conductivity, and viscosity for different polymer concentrations. The size of nanoparticles was found to be in the range of 30–60 nm for two different salt-to-PVP ratios. For higher concentration of polymer in nanofluid, nanoparticles were 30 nm in size showing increase in thermal conductivity but a decrease in viscosity and refractive index, which is due to the polymer structure around nanoparticles. Thermal conductivity measurements of nanofluids show substantial increment in the thermal conductivity of nanofluid relative to the base fluid and nonlinear enhancement over the 283–323 K temperature range. Rheology of nanofluids was studied at room temperature showing effect of polymer on viscosity and confirming the Newtonian behavior of nanofluid.  相似文献   

5.

The heat transfer performance and entropy analysis are done in a compact loop heat pipe (CLHP) with Al2O3/water and Ag/water nanofluid. A compact loop heat pipe having a flat square evaporator with dimensions of 34 mm (L)?×?34 mm (W)?×?19 mm (H) has been fabricated and tested for the heat load ranging from 30 to 500 W. The experimental tests are conducted by keeping the CLHP in the vertical orientation with distilled water, silver (Ag)/water and aluminium oxide (Al2O3)/water nanofluid having low volume concentrations of (0.09% and 0.12%). The effect of wall and vapour temperature, evaporator and condenser heat transfer coefficient, thermal resistance on the applied heat loads is experimentally investigated and compared. The experimental results showed that the evaporator thermal resistance is reduced by 34.70% and 20.21%, respectively, for 0.12 vol% of Ag, Al2O3 nanoparticles when compared with that of the distilled water. For the same volume concentrations of Ag, Al2O3 nanoparticles, an enhancement of 34.52%, 23.7%, 39.27% and 30.8%, respectively, observed for the convective heat transfer coefficients at the evaporator and condenser. The entropy is also reduced by 19.08% and 11.58% when Ag and Al2O3 nanofluids are used as the operating fluid. From the experimental tests, it is found that the addition of small amount of Ag nanoparticles in the working fluid enhanced the operating range by 15% when compared with that of Al2O3/water nanofluid without the occurrence of any dry-out conditions.

  相似文献   

6.
In the present study, the effect of volume concentration (0.05, 0.1 and 0.15 %) and temperature (10–90 °C) on viscosity and surface tension of graphene–water nanofluid has been experimentally measured. The sodium dodecyl benzene sulfonate is used as the surfactant for stable suspension of graphene. The results showed that the viscosity of graphene–water nanofluid increases with an increase in the volume concentration of nanoparticles and decreases with an increase in temperature. An average enhancement of 47.12 % in viscosity has been noted for 0.15 % volume concentration of graphene at 50 °C. The enhancement of the viscosity of the nanofluid at higher volume concentration is due to the higher shear rate. In contrast, the surface tension of the graphene–water nanofluid decreases with an increase in both volume concentration and temperature. A decrement of 18.7 % in surface tension has been noted for the same volume concentration and temperature. The surface tension reduction in nanofluid at higher volume concentrations is due to the adsorption of nanoparticles at the liquid–gas interface because of hydrophobic nature of graphene; and at higher temperatures, is due to the weakening of molecular attractions between fluid molecules and nanoparticles. The viscosity and surface tension showed stronger dependency on volume concentration than temperature. Based on the calculated effectiveness of graphene–water nanofluids, it is suggested that the graphene–water nanofluid is preferable as the better coolant for the real-time heat transfer applications.  相似文献   

7.
Due to the improved thermophysical characteristics of ionic liquids (ILs), such as their strong ionic conductivity, negligible vapor pressure, and thermal stability at high temperatures, they are being looked at viable contender for future heat transfer fluids. Additionally, the dispersing nanoparticles can further improve the thermophysical characteristics and thermal performance of ionic liquids, which is one of the emerging research interests to increase the heat transfer rates of the thermal devices. The latest investigations about the utilization of ionic liquid nanofluids as a heat transfer fluid is summarized in this work. These summaries are broken down into three types: (a) the thermophysical parameters including thermal conductivity, viscosity, density, and specific heat of ionic liquids (base fluids), (b) the thermophysical properties like thermal conductivity, viscosity, density, and viscosity of ionic liquids based nanofluids (IL nanofluids), and (iii) utilization of IL nanofluids as a heat transfer fluid in the thermal devices. The techniques for measuring the thermophysical characteristics and the synthesis of IL nanofluids are also covered. The suggestions for potential future research directions for IL nanofluids are summarized.  相似文献   

8.
Copper/carbon dot nanohybrids (Cu/CD NHs) were prepared via a facile precipitation method through a disproportionation reaction. The surface characterization was performed by various techniques such as XRD, FTIR and TEM. Then, water-based nanofluids composed of Cu/CD NHs at 0.1 and 0.5 mass% were prepared, and their thermo-physical properties including thermal conductivity, viscosity, density and specific heat were evaluated at various temperatures. The water-based Cu/CD nanofluid demonstrated to be a potential heat transfer fluid with a high stability. It was found that the thermal conductivity can be enhanced by increasing the nanoparticle concentration and temperature. Almost 1.25-fold increase in thermal conductivity has been achieved by raising the temperature up to 50 °C and at the concentration of 0.5 mass%. The heat capacity was found to increase with increasing concentration. Moreover, by increasing temperature the density and viscosity of the as-prepared nanofluid decreased, whereas the heat capacity showed an increasing trend.  相似文献   

9.
This research aimed to evaluate the thermal viscosity, stability, conductivity and density of coolants including PEG-functionalized graphene nanoplatelets (GNPs) and gum Arabic (GA)-treated GNPs as a base fluid at various temperatures and concentrations. The present study explores the impacts of GNPs functionalized with poly ethylene glycol (PEG) on the colloidal stability and thermophysical properties of water-based PEG-functionalized GNPs suspensions as a new generation of heat transfer fluids. To this end, PEG-functionalized GNPs as a covalent sample and GA-treated GNPs were synthesized and their colloidal stabilities were traced via UV–vis spectrometry. After functionalized, colloidal stability results indicate less sedimentation for covalent samples (less than 10%) that that of noncovalent one (almost 20%) after a 15-day period. In addition, all the thermophysical properties e.g. thermal conductivity, density and viscosity were measured experimentally. Further, it has shown that by loading PEG-functionalized GNPs in the water, the increasing rate of the density and viscosity is not significant, while water-based GA-treated GNPs nanofluids showed higher rates of increase. Interestingly, the water-based PEG-functionalized GNP nanofluids at very low concentration significantly increase the thermal conductivity in comparison with that of non-covalent nanofluid at the same concentration and temperature and defiantly water.  相似文献   

10.
Turbulent convective heat transfer of graphene–water nanofluids with various concentrations inside a uniformly heated circular tube is studied experimentally. For this purpose, experiments are conducted to measure thermal conductivity, viscosity, pressure drop, and heat transfer coefficient. Results show enhancement of thermal conductivity and moderate increment of viscosity with addition of low amounts of nanoparticles. Moreover, heat transfer coefficient shows relatively high augmentation, and pressure drop remains unchanged. The maximum enhancements are 10.30%, 4.95%, and 6.04% for thermal conductivity, viscosity, and heat transfer coefficient, respectively. UV–Vis spectroscopy results show that the nanofluids are highly stable.  相似文献   

11.
The heat transfer properties of synthetic oil (Therminol 66) used for high temperature applications was improved by introducing 15 nm silicon dioxide nanoparticles. Stable suspensions of inorganic nanoparticles in the non-polar fluid were prepared using a cationic surfactant (benzalkonium chloride). The effects of nanoparticle and surfactant concentrations on thermo-physical properties (viscosity, thermal conductivity and total heat absorption) of these nanofluids were investigated in a wide temperature range. The surfactant-to-nanoparticle (SN) ratio was optimized for higher thermal conductivity and lower viscosity, which are both critical for the efficiency of heat transfer. The rheological behavior of SiO(2)/TH66 nanofluids was correlated to average agglomerate sizes, which were shown to vary with SN ratio and temperature. The conditions of ultrasonic treatment were studied and the temporary decrease of agglomerate size from an equilibrium size (characteristic to SN ratio) was demonstrated. The heat transfer efficiencies were estimated for the formulated nanofluids for both turbulent and laminar flow regimes and were compared to the performance of the base fluid.  相似文献   

12.
In this present work, effect of Al/water nanofluids on the rheological performance of an automobile car radiator has been investigated. Nanofluids were fabricated by two-step methods, i.e., dispersing of aluminum metal bases nanoparticles of size 75–135 nm in double-distilled water. Experiments were conducted on single-pass cross-flow compact heat exchanger by varying the various parameters such as inlet temperature, flow rate through the heat exchanger, concentration of nanoparticles and velocity of air employed for cooling purpose. It was concluded that the hot side Nusselt numbers are improved by 3.37 and 5.0877% for 0.2 and 0.3% concentrations of nanofluids, respectively, at 318.15 K inlet fluids temperature as compared to base fluids. Colburn factor was increased by 12.94 and 23.45% for 0.2 and 0.3% nanoparticles volume concentration of nanofluids, respectively, at 318.15 K inlet temperature with respect to double-distilled water. Hot fluid side friction factor was increased by 14.04 and 20.916% for 0.2 and 0.3% nanoparticles volume concentration of nanofluids with respect to base fluids, but this average value of friction factor was decreased by 2.29 and 9.1412% when temperature was increased from 318.15 to 323.15 K and 328.15 K, respectively.  相似文献   

13.
Nanofluids are prepared by suspending the nanoparticles in the base fluid and can be substantially enhanced the heat transfer rate compared to the pure fluids. In this paper, experimental investigation of the effects of volume concentration and temperature on dynamic viscosity of the hybrid nanofluid of multi-walled carbon nanotubes and aluminum oxide in a mixture of water (80%) and ethylene-glycol (20%) has been presented. The nanofluid was prepared with solid volume fractions between 0.0625 and 1%, and experiments were performed in the temperature range of 25–50 °C. The measurement results at different shear rates showed that the base fluid and nanofluid samples with solid volume fractions of less than 0.5% had Newtonian behavior, while those with higher solid volume fractions (0.75 and 1%) exhibit a pseudoplastic rheological behavior with a power law index of less than unity. The results showed that viscosity has a direct relationship with solid volume fraction of the nanofluid. The value of maximum enhancement is which occurred in 25 °C. Moreover, the consistency index and power law index have been obtained by accurate curve fitting for samples with non-Newtonian behavior of nanofluids. The results also revealed that the apparent viscosity generally increases with an increase in the solid volume fraction.  相似文献   

14.
《印度化学会志》2021,98(11):100200
For the first time, the heat transfer performance of a CuO–ZnO (80:20)/water hybrid has been studied experimentally and numerically in a shell and tube heat exchanger under turbulent flow conditions nanofluid (STHE). All experiments are carried out with 0.01 ​vol% CuO–ZnO (80:20)/water hybrid nanofluid at Reynolds numbers (NRe) ranging from 1900 to 17,500. The stabilized hybrid nanofluids (30 ​°C-Tube side) are then used as a coolant to reduce the hot fluid (60 ​°C-shell side) temperature using a STHE, with the results for the convective heat transfer coefficient, Nusselt number, friction factor, and pressure drop reported. The primary goal of this paper is to investigate the impact of hybrid nanoparticle mixing ratio optimization on STHE heat transfer efficiency under various operating conditions. According to the findings, the CuO–ZnO (80:20)/water hybrid nanofluid improved the heat transfer performance of the STHE at all Reynolds numbers. When using nanofluid over water, the Nusselt number and pressure drop were improved by approximately 33% and 13%, respectively. The hybrid nanofluid's maximum thermal performance factor and thermal efficiency enhancement were 1.45 and 7%, respectively, at NRe ​= ​17,500. According to the study, the thermal conductivity of nanofluid varies by only 5% after ten trials. Furthermore, the ANSYS Fluent program was used to predict the behavior of the hybrid nanofluid in STHE, and the simulation results fit the experimental values very well.  相似文献   

15.

Nanofluids are obtained by suspending metallic or non-metallic nanoparticles in conventional base liquids and can be employed to increase heat transfer rate in various applications. In this study, the effects of adding three types of nanofluids on turbulent convective heat transfer at the entrance region of a constant wall heat flux tube were experimentally studied. The nanofluids were mixtures of aluminium oxide, copper oxide, and silicon carbide at various nanoparticle volume fractions ranging from 0.0002 to 0.002 in water. The convective heat transfer coefficient was measured at different Reynolds numbers of 10,000–50,000. At these concentrations and Reynolds numbers, a maximum of 11–18% of convection heat transfer coefficient was observed as compared to the base fluid, showing a 6–9% increase on average. In this study, it was observed that changes in the nanoparticle type had no considerable effect on heat transfer coefficient increase. According to the model proposed here, the dimensionless thickness of laminar sub-layer is specified as a functional equation of the volume fraction of nanoparticles for each material.

  相似文献   

16.
The present work investigates the best mix ratio of Glycerol in Water as a medium to prepare a stable nanofluid. Increasing the proportion of glycerol enhances the aqueous mix's dynamic viscosity and improves the prepared nanofluid's stability. The thermal conductivity and viscosity of the Glycerol and Water mixtures determination were undertaken at various Glycerol ratios. The best percentage of glycerol in the mixture is found to have the least amount of thermal conductivity loss and the optimum viscosity gain. Silica (SiO2) nanofluid of 0.25%, 0.5%, 1%, and 1.5% weight concentrations was prepared with this optimal mixture of Glycerol and Water. The stability of these SiO2 nanofluids is evaluated by determining the zeta potential at different time intervals. The nanofluids prepared were observed to be stable for one month. The thermal conductivity and viscosity of the nanofluids are measured between the temperature limits of 30°–70°C. A peak increment of 32.1%and 46.3% in thermal conductivity and viscosity is observed. Furthermore, when the percentage enhancement ratio (PER) and Mouromtseff ratio of these nanofluids is examined, it is observed that they have more excellent thermal performance at higher temperatures. Regression correlations are developed to estimate the thermal conductivity and viscosity of the prepared nanofluids with a maximum deviation of 9%.  相似文献   

17.

In this research, it is aimed to enhance the heat transfer properties of the carbon nanotubes through nitrogen doping. To this end, nitrogen-doped multiwall carbon nanotubes (N-CNTs) were synthesized via chemical vapor deposition method. For supplying carbon and nitrogen during the synthesis of N-CNTs, camphor and urea were used, respectively, at 1000 °C over Co–Mo/MgO nanocatalyst in a hydrogen atmosphere. N-CNTs with three different nitrogen loadings of 0.56, 0.98, and 1.38 mass% were synthesized, after which, water/N-CNT nanofluids of these three samples with concentrations of 0.1, 0.2, and 0.5 mass% were prepared. To obtain a stable nanofluid, N-CNTs were functionalized by nitric acid followed by stabilizing in water by employing the ultrasonic bath. Investigation on the stability of the samples showed a high stability level for the prepared water/N-CNT nanofluids in which the zeta potential of ??43.5 mV was obtained for the best sample. Also for studying the heat transfer properties, the thermal conductivity in the range of 0.1–0.5 mass% and convection heat transfer coefficients of nanofluids in the range of 0.1–0.5 mass%, and Reynolds number in the range of 4000–9000 were evaluated. The results showed 32.7% enhancement of the convection heat transfer coefficients at Reynolds number of 8676 and 27% increase in the thermal conductivity at 0.5 mass% and 30 °C.

  相似文献   

18.
The fluids containing nanoparticles have enhanced thermo-physical characteristics in comparison with conventional fluids without nanoparticles. Thermal conductivity and viscosity are thermo-physical properties that strongly determine heat transfer and momentum. In this study, the response surface method was firstly used to derive an equation for the thermal conductivity and another one for the viscosity of bioglycol/water mixture (20:80) containing silicon dioxide nanoparticles as a function of temperature as well as the volume fraction of silicon dioxide. Then, NSGA-II algorithm was used for the optimization and maximizing thermal conductivity and minimizing the nanofluid viscosity. Different fronts were implemented and 20th iteration number was selected as Pareto front. The highest thermal conductivity (0.576 W/m.K) and the lowest viscosity (0.61 mPa.s) were obtained at temperature on volume concentration of (80 °C and 2%) and (80 °C without nanoparticle) respectively. It was concluded that the optimum thermal conductivity and viscosity of nanofluid could be obtained at maximum temperature (80 °C) or a temperature close to this temperature. An increase in the volume fraction of silicon dioxide led to the enhancement of thermal conductivity but the solution viscosity was also increased. Therefore, the optimum point should be selected based on the system requirement.  相似文献   

19.

The thermal performance of a flat-plate solar collector (FPSC) is investigated experimentally and analytically. The studied nanofluid is SiO2/deionized water with volumetric concentration up to 0.6% and nanoparticles diameter of 20–30 nm. The tests and also the modeling are performed based on ASHRAE standard and compared with each other to validate the developed model. The dynamic model is based on the energy balance in a control volume. The system of derived equations is solved by employing an implicit finite difference scheme. Moreover, the thermal conductivity and viscosity of SiO2 nanofluid have been investigated thoroughly. The measurement findings indicate that silica nanoparticles, despite their low thermal conductivity, have a great potential for improving the thermal performance of FPSC. Analyzing the characteristic parameters of solar collector efficiency reveals that the effect of nanoparticles on the performance improvement is more pronounced at higher values of reduced temperature. The thermal efficiency, working fluid outlet temperature and also absorber plate temperature of the modeling have been confirmed with experimental verification. A satisfactory agreement has been achieved between the results. The maximum percentage of deviation for working fluid outlet temperature and collector absorber plate temperature is 0.7% and 3.7%, respectively.

  相似文献   

20.
Thermal conductivity is an important parameter in the field of nanofluid heat transfer. This article presents a novel model for the prediction of the effective thermal conductivity of nanofluids based on dimensionless groups. The model expresses the thermal conductivity of a nanofluid as a function of the thermal conductivity of the solid and liquid, their volume fractions, particle size and interfacial shell properties. According to this model, thermal conductivity changes nonlinearly with nanoparticle loading. The results are in good agreement with the experimental data of alumina-water and alumina-ethylene glycol based nanofluids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号