首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
The present article deals with the synthesis of novel nano-sized fluorinated thiazoles and studying their anticancer potentiality. The targeted azoles could be accessed via trifluoro-methylated thiosemicarbazone (3) prepared by reaction of with thiosemicarbazide in acidic solution of ethanol. The latter a fluorinated building block (3) have been reacted with appropriate derivatives of a-halo compounds namely, N-aryl 2-oxopropane-hydrazonoyl chlorides 4a-f using dioxane containing TEA as base catalyst. Also, the reaction between N-(4-(1-(2-carbamothioylhydrazineylidene)ethyl)phenyl)-2,2,2-trifluoroacetamide (3) and chloroacetonitrile 8 under the same experimental conditions furnished the corresponding amino thiazole derivative 11. In the same manner the base catalyzed cyclocondensation reaction between N-(4-(1-(2-carbamothioylhydrazineylidene)ethyl)phenyl)-2,2,2-trifluoroacetamide (3) and phenacyl bromide derivatives 12a-d afforded the corresponding thiazoles 13a-d in good yield. The structure of all synthesized thiazole derivatives as well as their mechanistic pathways were studied based on spectral data analysis and physical characteristics. The nanosized products were confirmed by using XRD analysis. Moreover, twelve samples were submitted for evaluation of their cytotoxicity activities against MDA-MB-231 (breast cancer cell) using colorimetric MTT assay, in comparison with Cisplatin standard drug. Two nano-sized thiosemicarbazone derivative 3 and the thiazole derivative 7c showed potent activity with IC50 = 7.7 and 2.97 µg/ml, respectively in compared with the IC50 = 4.33 µg/ml of cisplatin. The nanosized thiazole derivative 7c was more potent than cisplatin. Also, two thiazole derivatives 13b and 7b showed good activity with IC50 = 13.4 and 14.9 µg/ml. In addition, the molecular docking studies have been achieved using 4hy0, (X-chromosome-linked- inhibitor of apoptosis protein; (XIAP)).  相似文献   

2.
In the present study novel heterocyclic tetrads containing furan, pyrazoline, thiazole and triazole (or oxadiazole) (1, 2, 3, 4a-e and 5a-e) were designed and synthesized and investigated for their antimicrobial (against selected bacteria and fungi) and anticancer potential. The molecules 4e and 5e containing 4-fluoro phenyl and 4-fluoro benzyl substituents showed promising antimicrobial (antibacterial and antifungal activities with MICs ranging between 0.5 and 8 µg/mL. Compounds 3 exhibited potent anticancer activity with an IC50 value of 0.49 ± 1.45 µM against the human gastric cancer cell line (BGC-823) whereas compound 4e displayed an IC50 value of 0.65 ± 0.53 µM against breast cancer (MCF-7) cell line respectively. All compounds showed selective toxicity against the cancer cell lines compared to human normal liver cell lines. Molecular docking studies of the most potent compounds (3 and 4e) against selected microbial and cancer proteins revealed the crucial binding interactions of the potent compounds with the target enzymes. Compounds 3 and 4e are promising lead molecules to be developed as potential drug candidates.  相似文献   

3.
A series of chalcone analogues (1–15) were synthesized by Claisen-Schmidt condensation in good yields (70–95%) and characterized by FT-IR, 1H NMR and mass spectral methods. Additionally, compounds 3 and 7 were characterized by 13C NMR. Antitubercular and antioxidant activities of the chalcones were evaluated by MABA and DPPH free radical assays. In MABA assay analogues 3 (MIC = 14 ± 0.11 µM) and 11 (MIC = 14 ± 0.17 µM) bearing fluorine and methoxy groups at para and meta positions were 1.8-times more active than the standard pyrazinamide (MIC = 25.34 ± 0.22 µM). The chalcone analogues such as compound 7 (IC50 = 4 ± 1 µg/mL) containing electron releasing groups such as OH at ortho position had slightly more antioxidant activity than Gallic acid (IC50 = 5 ± 1 µg/mL). The potential compounds 3, 7, 9 and 11 were less selective and toxic against human live cell lines-LO2. Further, molecular docking results of chalcones against anti-tubercular drug target isocitrate lyase (PDB ID: 1F8M) revealed that compound 3 and 11 shown least binding energies as ?7.6, and ?7.5 kcal/mol are in line with in vitro MABA assay, suggesting that these compounds 3 and 11 are strong inhibitor of isocitrate lyase. SwissADME programme estimated the drug likeliness properties of compounds 3, 7, 9 and 11. The lead molecules arisen through this study helps to develop new antitubercular and antioxidant agents.  相似文献   

4.
Increase in the number of infections caused by pathogenic microbes in cancer patients has prompted the searcher to invest in the development of agents having dual anticancer and antimicrobial properties. The present study is concerned with synthesis and screening for anticancer and antimicrobial activity of a series of 5-hydrazinyl-2-(2-(1-(thien-2-yl)ethylidene)hydrazinyl)thiazole derivatives. The structure elucidation of the synthesized hydrazinyl thiazole derivatives was illustrated by spectroscopic and elemental analysis. All the newly synthesized compounds 5a-p were evaluated for in-vitro cytotoxic activity against breast carcinoma (MCF-7 cell line), hepatocellular carcinoma (HePG-2) and colorectal cancer (HCT-116) cell lines using MTT assay method. Compounds 5 g, 5h showed broad spectrum activity against three cancer cell lines with IC50 ranged from 3.81 to 11.34 µM in compared to the reference drug Roscovitine (IC50 = 9.32 to 13.82 µM), while compounds 5 l and 5 m were found to be more selective against HePG-2 and HCT-116 cell line (IC50 = 9.29 and 8.93 µM respectively) and compound 5j was more selective against HePG-2 and MCF-7 cell lines (IC50 = 6.73 and 10.87 µM respectively). The inhibitory activity of the most promising compounds was tested against the EGFR and ARO enzymes and were further tested for apoptosis and Annexin V/PI staining. The results of enzyme-based tests revealed that the tested compound 5j has a dual inhibitory effect on the EGFR and ARO enzymes with IC50 = 82.8 and 98.6 nM respectively in compared to the reference drugs Erlotinib and Letrozole (IC50 = 62.4 and 79 nM respectively). Furthermore, the majority of the tested hydrazinyl thiazole derivatives exhibited significant antimicrobial activity against the used pathogenic microbes species. Compounds 4b, 5h, 5j and 5 m exerted a good antibacterial and antifungal activity against all tested pathogenic microbes. Therefore, it was concluded that compounds 5 h, 5j and 5 m proved to possess dual anticancer and antimicrobial agent and may serves as a useful lead compounds in search for further modification or derivatization to give more potent and selective agents.  相似文献   

5.
Bioassay based fractionation of methanolic extract of Berberis baluchistanica (Berberidaceae), used traditionally for internal injuries, led to the isolation of known compounds (14). The structure of these compounds was elucidated by different spectroscopic analysis and available literature data. Antidiabetic and antioxidant potentials of B. baluchistanica fractions and isolated compounds were evaluated using in vitro alpha- amylase and DPPH assays. The isolated compounds were identified as obamegine (1), pakistanine (2), 8-oxyberberine (3) and baluchistine (4). Obamegine was reported from many other species of this genus but it is first time isolated from B. baluchistanica in present study. Moreover, in vitro pakistanine (2) was found as bioactive lead molecule for hypoglycemic (IC50:40.26 µg/ml) and antioxidant (IC50:14.15 µg/ml) activities compared to acarbose (IC50:33.68 µg/ml) and ascorbic acid (IC50:0.41 µg/ml). To the best of our knowledge, no previous data were available for these biological activities. Additionally, in silico antidiabetic and antioxidant activity of pakistanine against two proteins, α-amylase (-9.7 kcal/mol) and tyrosinase (-8.7 kcal/mol) are reported here for the first time. The molecular docking binding interactions authenticate and support the above-mentioned activities and are helpful in predicting the mechanism of action of pakistanine (2).  相似文献   

6.
Data on synthesized derivatives of salazinic acid are scarce, with existing reports addressing only derivative hexaacetyl salazinic acid. This study investigated a set of novel potential antidiabetic agents. Analogs of salazinic acid were designed and synthesized using bromination, nucleophilic addition, Friedel-Crafts alkylation, and esterification. Ten synthetic compounds were prepared and structurally elucidated, including eight new compounds (1a-1c, 2a, 3a, 3b, 4a, 4b) and two known analogs. Under bromination, salazinic acid (1) enabled the following reaction chain: oxidation, decarboxylation, and substitution. This yielded products 1a-1c, which were found to have unprecedented scaffolds. Parmosidone F (5) was prepared from 1 with orsellinic acid via Friedel-Crafts alkylation, confirming a previously reported biosynthesis route. These analogs were evaluated for enzyme inhibition of α-glucosidase, and all showed more potent activity than that of acarbose, a positive control (IC50 332 μM), with IC50 values in the range 9.32–39.96 μM. An in silico molecular docking model confirmed that, in terms of enzyme inhibition, the compounds ranked as follows: 3b > 4b > 4a > 1c > 2a > 1b > 1a > 3a. The kinetics of enzyme inhibition showed 4a and 5 to be a non-competitive-type and mixed-type inhibitors, respectively.  相似文献   

7.
A series of new antipyrine incorporated thiazole derivatives having phenoxyacetamide moiety as a link bridge was synthesized. The synthetic strategy involves condensation of the precursor N-(4-antipyrinyl)-2-(4-formylphenoxy)acetamide with thiosemicarbazide followed by heterocyclization of the produced thiosemicarbazone with various α-halogenated carbonyl compounds (namely; 4-chlorophenacyl bromide, ethyl bromoacetate, 3-chloroacetylacetone and ethyl 4-chloroacetoacetate). Moreover, the quantum chemical calculations at DFT/B3LYP level were used to determine the HOMO-LUMO energies and Fukui’s indices toward nucleophilic, electrophilic and radical attacks. The investigated compounds were arranged due to HOMO-LUMO energy gap as following 6 < 5 < 7 < 3 < 2 < 4 < 8. The synthesized antipyrinyl-thiazole hybrids were screened to evaluate their antibacterial and antifungal efficacies. Using Chloramphenicol as reference material, the synthesized antipyrinyl-thiazole hybrids were revealed a remarkable activity against S. aureus than B. subtilis, as example for Gram’s positive strains. The antipyrine-thiazole compounds 3, 4, 6 and 8 exhibited significant MIC values. However, the antipyrine-thiazole hybride 4 displayed reputable activities against Gram’s negative strains S. typhimurium and E. coli, respectively, in comparison with Cephalothin. Likewise, the compounds 7 and 8 were demonstrated respectable antifungal efficacy toward C. albicans in contrast to cycloheximide grade. The theoretical molecular docking studies were applied to simulate reactivity of the synthesized antipyrine-thiazole hybrids against contrasting binding sites for both of Staphylococcus aureus “Homo sapiens” (pdb: 3HUN) protein and E.coli “Homo sapiens” (PDB: 2EXB) protein. The theoretical and practical antibacterial and antifungal activities result in this work designated a proper agreement.  相似文献   

8.
Laportea bulbifera (Sieb. et. Zucc.) Wedd has long been utilized in Traditional Chinese Medicines (TCM) for the treatment of rheumatoid arthritis. However, the study of systematic anti-inflammatory chemical constituents in L. bulbifera has never been reported. Thus, bioassay-guided isolation for its roots part led to 46 compounds, including 38 phenolic derivatives. Their structures were determined on the basis of 1H and 13C NMR and MS spectra. All compounds were isolated from L. bulbifera for the first time except for 13 compounds. Most of the compounds showed good COX-2 inhibitory activity (IC50: 0.13–3.94 μM) and DPPH radical-scavenging activity (IC50: 1.57–9.55 μM). Four compounds (4, 17, 35, and 43) with different skeletons showed preferential COX-2 over COX-1 inhibition with selective indices ranging from 12 to 171. High content active compounds are important for elucidating the basis of the active substance of TCM. Compound 4 (COX-2, IC50 0.24 μM), a high content compound, represented one of the best selective COX-2 inhibitors. Another high content active compound (35) with a different skeleton might have different mechanism. Further study for the inhibition kinetics against COX-2 indicated compounds 4 and 35 were noncompetitive and competitive COX-2 inhibitors, respectively. Moreover, molecular docking and molecular dynamics simulation data further indicated that compound 4 could bind in the cavity of COX-2 and interacted with key residues VAL-538, PHE-142, and GLY-225 of COX-2 through hydrogen bonds. The results indicated that L. bulbifera roots could be applied as antioxidant and anti-inflammatory agents due to their potent selective COX-2 inhibitory and antioxidant activity of phenolic compounds.  相似文献   

9.
A series of novel thiazolidine-4-one derivatives was synthesized by reacting 1,4-disubstituted hydrazine carbothioamides with diethyl azodicarboxylate. The structures were confirmed by spectroscopic data as well as single-crystal X-ray analyses. The antiproliferative activity of the synthesized compounds was investigated against four human cancer cell lines using an MTT assay. Compounds 5d, 5e, and 5f revealed the most potent antiproliferative activity with GI50 values ranging from 0.70 µM to 1.20 µM, compared to doxorubicin GI50 value = 1.10 µM. Compounds 5d, 5e, and 5f were further investigated for their inhibitory activities against CDK2 and EGFR as potential targets for their molecular mechanism. Compounds 5e and 5f have showed potent inhibitory activity to CDK2 enzyme with IC50 values of 18 and 14 nM, which is more potent than the reference dinaciclib (IC50 = 20 nM). Moreover, compounds 5e and 5f were the most potent EGFR inhibitors, with IC50 values of 93 and 87 nM, respectively, compared to the reference erlotinib (IC50 = 70 nM). In addition, the most potent derivatives were tested for their apoptotic activity against caspases 3, 8, and 9, and the results showed that compounds 5d, 5e, and 5f revealed a greater increase in active caspases 3,8 and 9 than doxorubicin. Also, compounds 5d, 5e, and 5f elevated cytochrome C levels in the MCF-7 human breast cancer cell line by about 15.5, 15.8, and 16.5 times, respectively. Finally, a molecular docking study was performed to investigate the binding sites of these compounds within the active sites of CDK2 and EGFR targets, and the results confirmed that the most potent CDK2 and EGFR inhibitor 5h also have showed the highest docking score.  相似文献   

10.
Trichlorogermyl complexes M(GeCl3)(CO)nP5? n (1–4) [M = Mn, Re; n = 2, 3; P = PPh(OEt)2 (a), P(OEt)3 (b)] were prepared by allowing chloro compounds MCl(CO)nP5? n to react with an excess of GeCl2?dioxane in 1,2-dichloroethane. Treatment of compounds 1–4 with LiAlH4 in thf yielded trihydridegermyl derivatives M(GeH3)(CO)nP5?n (5–8), whereas treatment of the same complexes with NaBH4 in ethanol afforded triethoxygermyl derivatives M[Ge(OEt)3](CO)nP5?n (9–11). Trimethylgermyl compounds M(GeMe3)(CO)nP5?n (12, 13) and the alkynylgermyl derivative Mn[Ge(CCPh)3](CO)3[PPh(OEt)2]2 (14a) were also prepared by allowing trichlorogermyl compounds 1–4 to react with either MgBrMe or Li+CCPh?, respectively, in thf. Treatment of compound Re(GeCl3)(CO)3[PPh(OEt)2]2 (4a) with SnCl2?2H2O gave the stannyl-germyl derivative Re[GeCl2(SnCl3)](CO)3[PPh(OEt)2]2 (15a). The complexes were characterised by spectroscopy and X-ray crystal structure determination of 4a, 5a, and 13a.  相似文献   

11.
A new series of pyridothienopyrimidine derivatives was designed and evaluated as antimicrobial and anticancer agents. The target compounds were synthesized starting with 3-aminothieno[2,3-b]pyridine-2-carboxamide derivative 1 which underwent cyclocondensation reaction with aromatic aldehydes to give the key intermediates 2a,b. By further treatment of 2a,b with various reagents, the target 2,4-disubstituted-pyrido[3′,2′:4,5]thieno[2,3-d]pyrimidines 3a,b11a,b were obtained. To evaluate the antimicrobial activity of the new compounds, they were tested against five bacterial and five fungal strains. Compounds 6c, 8b, 9a and 9b revealed the most significant antimicrobial activity against the tested microorganisms with MIC values range (4–16 μg/mL). Also, compounds 2a,b11a,b were screened for their in vitro cytotoxic activity against HepG-2 and MCF-7 cancer cell lines compared with doxorubicin and cisplatin as references drugs. Moreover, compounds (2b, 4a, 6a, 7b, 7c and 9a) which exhibited the most potent anticancer activity, were further subjected to EGFRWT enzyme inhibition assay utilizing erlotinib as a standard drug. The compounds 6a, 7b, 7c and 9a which showed the most promising suppression effects were also evaluated as inhibitors against the mutant forms EGFRL858R and EGFRT790M. The 4-aminopyrazolone analogue 9a showed superior anticancer activity against both HepG-2 and MCF-7 cell lines (IC50 = 1.27, 10.80 μM, respectively) and more potent enzymatic inhibition activity against EGFRWT and its mutant forms EGFRL858R and EGFRT790M than that obtained by erlotinib (IC50 = 0.021, 0.053, 0.081 µM, respectively, IC50erlotinib; 0.027, 0.069, 0.550 µM, respectively). Finally, the molecular docking study showed good binding patterns of the most active compounds with the prospective target EGFRWT.  相似文献   

12.
13.
Five new arylnaphthalide lignans (1 ? 4a/4b), together with five known analogues (59), were isolated from whole plants of Saussurea medusa. Compound 4 was characterized as an aryltetralin lignan with an unusual C-7′-C-9 oxygen bridge group, and a chiral HPLC analysis was carried out to afford one pair of enantiomers (4a/4b). Structures of the new compounds were elucidated by extensive spectroscopic and electronic circular dichroism (ECD) calculations. All compounds were firstly isolated from S. medusa, and compounds 15, 7 and 8 had never been obtained from the genus Saussurea previously. Furthermore, this is the first report of arylnaphthalide lignans isolated from S. medusa. anti-inflammatory activities of the compounds were evaluated by determining their inhibitory activities on the production of NO by LPS-stimulated RAW 264.7 cells. Compounds (?)-4a and 5 exerted the significant inhibition activities with IC50 values of 13.4 ± 1.5 and 15.7 ± 1.1 μM, respectively, which even exceeded the positive control quercetin (IC50 = 15.9 ± 1.2 μM). Compounds 2, (+)-4b, 6 and 9 exhibited moderate inhibitory activities with IC50 values ranging from 19.7 ± 1.9 to 47.4 ± 3.1 μM. Further analysis by molecular docking showed that almost all the active compounds could interact with the amino acid residues of iNOS proteins, which also supported their anti-inflammatory activities.  相似文献   

14.
Fourteen N-[{(substituted-phenylthiazol-2-yl)-3-aryl-1H-pyrazol-4-yl}methylene]-5-substituted-thiazol-2-amine (5a-n) analogs were synthesized by the reaction of 3-aryl-1-(thiazol-2-yl)-1H-pyrazole-4-carbaldehyde and substituted thiazole amines. The structures of prepared compounds were delineated by elemental analysis, FT-IR and 1H NMR spectra. These analogs were scrutinized for in vitro anti-infective and cytotoxic activities. Some thaizole clubbed pyrazole derivatives were assessed for their cytological changes in germ cells of Capra hircus by using histomorphological analysis, fluorescence assay and apoptosis quantification. Compound 5l having 4-NO2 substituent induced the significant apoptosis in tested cells of Capra hircus. The results revealed that compounds 5c, 5e, 5k, and 5l have commendable antibacterial activity within MIC range of 62.5–250 μg/ml. Compound 5c emerged as a potent antimalarial compound by exhibiting IC50 value of 0.23 μg/ml and compound 5j induced paralysis of Pherentima posthuma at 8.6 ± 1.94 min and death at 20 ± 5.04 min, respectively. Compound 5j revealed an excellent cytotoxicity at IC50 value of 30.7 and < 10 μg/ml against MCF-7 and HeLa cells, respectively. Individually, compounds 5c, 5j and 5l could be considered as promising anti-infective and cytotoxic compounds.  相似文献   

15.
Synthesis of a series of novel sulfone derivatives 6(a-u) possessing benzimidazoles and isoxazoline rings tailored in a single molecule 5(a-u) was done by reactions using 5-(bromomethyl)-3-phenyl-4,5-dihydroisoxazoles 3(a-u) and 5-{[(1H-benzo[d]imidazol-2-yl)thio]methyl}-3-phenyl-4,5-dihydroisoxazoles 4(a-u) molecules. The chemical structures of all the newly synthesized compounds were established by IR, 1HNMR, 13CNMR and LCMS spectral data. The biological characteristics of the novel sulfone compounds, such as their antioxidant and antibacterial activity, were evaluated. Among the synthesized sulfones derivatives, compounds 6 g, 6b, and 6e demonstrated outstanding antibacterial activity while compounds 6b, 6c, 6i, 6j, and 6 k demonstrated higher antioxidant activity. Further insilico absorption, distribution, metabolism, excretion, and toxicity (ADMET) studies of synthesized sulfones were studied which exhibited excellent intestinal absorption which is more than 80 %, and relatively moderate toxicity. Molecular docking studies confirmed the antibacterial and antioxidant potential which is comparable with the standard.  相似文献   

16.
Arylselenium(II) derivatives of dithiophosphorus ligands of type ArSeSP(S)R2 [Ar = Ph, R = Ph (1), OPri (2); 2-[MeN(CH2CH2)2NCH2]C6H4, R = Ph (3), OPri (4); 2-[O(CH2CH2)2NCH2]C6H4, R = OPri (6)] were prepared by redistribution reactions between Ar2Se2 and [R2P(S)S]2. The derivative [2-{O(CH2CH2)2NCH2}C6H4]SeSP(S)Ph2 (5) was obtained by the salt metathesis reaction between [2-{O(CH2CH2)2NCH2}C6H4]SeCl and NH4S2PPh2. The compounds were investigated by multinuclear (1H, 13C, 31P, 77Se) NMR and infrared spectroscopy. The crystal and molecular structures of 1, 3, 4 and 6 were determined by single-crystal X-ray diffraction. In compounds 3, 4 and 6 the N(1) atom is intramolecularly coordinated to the selenium center, resulting in a T-shaped geometry (hypervalent 10-Se-3 species). The dithiophosphorus ligands act as anisobidentate in 1 and monodentate in 3, 4 and 6. Supramolecular architectures based on intermolecular S?H and N?H contacts between molecular units are formed in the hypervalent derivatives 3 and 4, while in the compounds 1 and 6 the molecules are associated into polymeric chains through either Se?S or O?H contacts, with no further inter-chain interactions.  相似文献   

17.
In the present study, twenty (20) structural variants of nitrofurazone were synthesized based on BIODS (Biology-oriented drug synthesis) approach. The structure elucidation of the synthetic molecules (120) was carried out using different spectroscopic techniques, and their α-glucosidase inhibitory activity was also determined. The synthetic molecules 120 exhibited good α-glucosidase inhibition than the parent, nitrofurazone. Four compounds 2, 4, 6, and 7 showed potential inhibition against α-glucosidase with IC50 values ranging between 0.63 ± 0.25–1.29 ± 0.46 µM as compared to the standard acarbose (IC50 = 2.05 ± 0.41 µM). Nevertheless, compounds 15 (IC50 = 0.74 ± 0.12 µM), and 19 (IC50 = 0.54 ± 0.3 µM) also displayed good α-glucosidase inhibition and compound 19 was the most active compound of the series. Kinetic study of the active compounds 7 and 19 was also carried out to confirm the mode of inhibition. The binding interactions of the most active compounds within the active site of enzyme were determined by molecular docking. Moreover, molecular dynamic simulation of compound 19 was also performed in order to determine the stability of the overall complex (α-glucosidase + c19) in an explicit watery environment. The synthetic molecules were predicted as non-cytotoxic, however, seven compounds 1, 3, 4, 9, 10, 11, and 12 were predicted as carcinogenic.  相似文献   

18.
19.
Eleven mixed-ligand organotellurium(IV) compounds of composition R2Te(dtc)(dtp) have been prepared employing two different dithiocarbamate (dtc) and dithiophosphate (dtp) ligands: 1, R2 = C4H8, dtc = S2CNEt2, dtp = S2P(OCH2)2CEt2; 2, R2 = C8H8, dtc = S2CNEt2, dtp = S2P(OCH2)2CEt2; 3, R2 = C4H8O, dtc = S2CNEt2, dtp = S2P(OCH2)2CEt2; 4, R2 = C5H10, dtc = S2CNEt2, dtp = S2P(OCH2)2CEt2; 5, R2 = C4H8, dtc = S2CN(CH2)4, dtp = S2P(OCH2)2CEt2; 6, R2 = C8H8, dtc = S2CN(CH2)4, dtp = S2P(OCH2)2CEt2; 7, R2 = C4H8O, dtc = S2CN(CH2)4, dtp = S2P(OCH2)2CEt2; 8, R2 = C5H10, dtc = S2CN(CH2)4, dtp = S2P(OCH2)2CEt2; 9, R2 = C4H8, dtc = S2CN(CH2)4, dtp = S2P(OCH2)2CMenPr; 10, R2 = C8H8, dtc = S2CN(CH2)4, dtp = S2P(OCH2)2CMenPr; 11, R2 = C4H8O, dtc = S2CN(CH2)4, dtp = S2P(OCH2)2CMenPr. 1-11 were characterized by mass spectrometry, IR spectroscopy and multinuclear NMR (1H, 13C, 31P, 125Te) spectroscopy. The molecular structures of 2, 4 and 6, of which 2 crystallized in form of two different polymorphs (2a and 2b), were analyzed by single-crystal X-ray diffraction analysis. This analysis showed that the coordination mode of both ligand types is anisobidentate. When considering only covalent Te-C and Te-S bonds, the coordination geometry of the tellurium atoms is distorted Ψ-trigonal-bipyramidal, since the lone pair is stereochemically active and occupies an equatorial position together with the carbon atoms of the tellurocycles. If secondary Te?S interactions are considered also, the coordination sphere around tellurium is best described as bicapped Ψ-trigonal-bipyramidal for the complexes with two intramolecular Te?S secondary bonds and monomeric molecular structures, and pentagonal-bipyramidal for the complexes in which neighboring molecules in the crystal lattice are linked through additional weak intermolecular Te?S secondary bonds to form dimeric supramolecular aggregates.  相似文献   

20.
New benzimidazole analogues (118) were synthesized and characterized through different spectroscopic techniques such as 1H NMR, 13C NMR and HREI-MS. All analogues were screened for β-glucuronidase inhibitory potential. All analogues showed varied degree of inhibitory potentials with IC50 values ranging between 1.10 ± 0.10 to 39.60 ± 0.70 μM when compared with standard D-saccharic acid-1,4- lactone having IC50 value 48.30 μM. Analogues 17, 11, 9, 6, 1 and 13 having IC50 values 1.10 ± 0.10, 1.70 ± 0.10, 2.30 ± 0.10, 5.30 ± 0.20, 6.20 ± 0.20 and 8.10 ± 0.20 μM respectively, showed excellent β-glucuronidase inhibitory potential many folds better than the standard. All other analogues also showed good inhibitory potential better as compared to standard. Structure activity relationships (SAR) has been established for all compounds. The results from molecular docking studies supports the established SAR and developed a strong correlation with the results from in to vitro assay. The molecular docking results clearly highlighted how substituents like nitro and chloro affect the binding position of the active compounds in the active site. The docking results were also used to properly establish the effect of bulky substituents of least active compounds on reduced β-glucuronidase inhibitory activity. Compounds 118 were found non-toxic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号