首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
A heavy fourth generation with a mass of the order of 400 GeV or more could trigger dynamical electroweak symmetry breaking by forming condensates through the exchange of a fundamental Higgs scalar doublet. The dynamics leading to these condensates is studied within the framework of the Schwinger–Dyson equation. This scenario leads to the presence of three (two composite and one fundamental) Higgs doublets, with interesting phenomenological implications. In addition, this dynamical phenomenon occurs in the vicinity of the energy scale where the restoration of scale symmetry might happen.  相似文献   

2.
The fundamental constraint on two Higgs doublet models comes from the requirement of sufficiently suppressing flavor-changing neutral currents. There are various standard approaches for dealing with this problem, but they all tend to share a common feature; all of the Higgs doublets couple very weakly to the first generation quarks. Here we consider a simple two Higgs doublet model which is able to have large couplings to the first generation, while also being safe from flavor constraints. We assume only that there is an SUf(3) flavor symmetry which is respected by the couplings of one of the Higgs doublets, and which is broken by Hermitian Yukawa couplings of the second doublet. As a result of the large permitted couplings to the first generation quarks, this scenario may be used to address the excess in W+dijet events recently observed by CDF at the Tevatron. Moreover, Hermitian Yukawa coupling matrices arise naturally in a broad class of solutions to the strong CP problem, providing a compelling context for the model.  相似文献   

3.
Within the minimal model based on the four-color symmetry of quarks and leptons of the Pati-Salam type, the asymptotic behavior of amplitudes for processes involving longitudinal leptoquarks (and W or Z′ bosons) is investigated, together with the mechanism according to which the growth of these amplitudes at high energies is suppressed by scalar fields. It is shown that, within the Higgs mechanism of mass generation and of the mass splitting of quarks and leptons, the four-color symmetry of quarks and leptons requires that scalar-leptoquark doublets, scalar-gluon doublets, and an extra color-singlet scalar doublet exist in addition to the standard Higgs doublet.  相似文献   

4.
We present the symmetry realization of the phenomenologically viable Frampton-Glashow-Marfatia (FGM) two zero texture neutrino mass matrices in the flavor basis within the framework of the type (I+II) seesaw mechanism natural to SO(10) grand unification. A small Abelian cyclic symmetry group Z3 is used to realize these textures except for class C for which the symmetry is enlarged to Z4. The scalar sector is restricted to the Standard Model (SM) Higgs doublet to suppress the flavor changing neutral currents. Other scalar fields used for symmetry realization are at the most two scalar triplets and, in some cases, a complex scalar singlet. Symmetry realization of one zero textures has, also, been presented.  相似文献   

5.
In the two Higgs doublet model, natural flavour conservation can be achieved through the use of a discrete Z2Z2 symmetry. A less restrictive condition is the requirement of alignment in the Yukawa sector. So far, alignment has been an ansatz, not rooted in a specific model. In this Letter we present a model for alignment, which starts with 2+N2+N Higgs doublets, with natural flavour conservation imposed by a discrete symmetry. Only two of these scalars couple to the fermions, the other N scalars are in a hidden sector. Assuming that the two scalar doublets coupled to fermions are heavy, their decoupling leads to an effective Yukawa interaction. The latter connects the fermions and the scalars of the hidden sector, and exhibits the same Yukawa coupling matrix for each of the N scalars.  相似文献   

6.
Motivated by recent results from the LHC experiments, we analyze Higgs couplings in two Higgs doublet models with an approximate PQ   symmetry. Models of this kind can naturally accommodate sizable modifications to Higgs decay patterns while leaving production at hadron colliders untouched. Near the decoupling limit, we integrate out the heavy doublet to obtain the effective couplings of the SM-like Higgs and express these couplings in a physically transparent way, keeping all orders in (mh/mH)(mh/mH) for small PQ breaking. Considering supersymmetric models, we show that the effects on the Higgs couplings are considerably constrained.  相似文献   

7.
In the Standard Model, the Higgs potential allows only one minimum at tree level. But the open possibility that there might be two scalar doublets enriches the vacuum structure, allowing for the risk that we might now be in a metastable state, which we dub the panic vacuum. Current experiments at the LHC are probing the Higgs particle predicted as a result of the spontaneous symmetry breaking. Remarkably, in the two Higgs model with a softly broken U(1) symmetry, the LHC experiments already allow to exclude many panic vacuum solutions.  相似文献   

8.
In the two Higgs doublet model with no additional symmetries in the scalar sector (different from the gauge and Lorentz symmetries), it is customary to reparameterize the model by rotating the scalar doublets so that one of the vacuum expectation values vanishes. It is well known that the Yukawa sector of the model is unaffected by such a transformation. Notwithstanding this, since the Higgs potential must also be transformed, it is necessary to show that such a sector is also unaltered in its physical content. We demonstrate that the physical content of the potential is invariant even when the charge conjugation symmetry is demanded. PACS 12.60.Fr; 11.30.Er; 11.15.Ex; 11.30.Hv  相似文献   

9.
We study phenomenological consequences of the Standard Model extension by the new spin-1 fields with the internal quantum numbers of the electroweak Higgs doublets. We show, that there are at least three different classes of theories, all motivated by the hierarchy problem, which predict appearance of such vector weak-doublets not far from the weak scale. The common feature for all the models is the existence of an SUW(3) gauge extension of the weak SUW(2) group, which is broken down to the latter at some energy scale around TeV. The Higgs doublet then emerges as either a pseudo-Nambu-Goldstone boson of a global remnant of SUW(3), or as a symmetry partner of the true eaten-up Goldstone boson. In the third class, the Higgs is a scalar component of a high-dimensional SUW(3) gauge field. The common phenomenological feature of these theories is the existence of the electroweak doublet vectors (Z?,W?), which in contrast to well-known Z and W bosons posses only anomalous (magnetic moment type) couplings with ordinary light fermions. This fact leads to some unique signatures for their detection at the hadron colliders.  相似文献   

10.
It is likely that the LHC will observe a color- and charge-neutral scalar whose decays are consistent with those of the standard model (SM) Higgs boson. The Higgs interpretation of such a discovery is not the only possibility. For example, electroweak symmetry breaking could be triggered by a spontaneously broken, nearly conformal sector. The spectrum of states at the electroweak scale would then contain a narrow scalar resonance, the pseudo-Goldstone boson of conformal symmetry breaking, with Higgs-boson-like properties. If the conformal sector is strongly coupled, this pseudodilaton may be the only new state accessible at high energy colliders. We discuss the prospects for distinguishing this mode from a minimal Higgs boson at the LHC and ILC. The main discriminants between the two scenarios are (i) cubic self-interactions and (ii) a potential enhancement of couplings to massless SM gauge bosons.  相似文献   

11.
The Higgs sector of the MSSM may be extended to solve the μ problem by the addition of a gauge singlet scalar field. We consider an extended Higgs model. For simplicity we consider the case where all the fields in the scalar sector are real. We analyze the vacuum structure of the model. We address the question of an exothermic phase transition from a broken susy phase with electroweak symmetry breaking (our current universe) to an exact susy phase with electroweak symmetry breaking (future susy universe).  相似文献   

12.
By setting the quadratic divergences to zero, four mass relations are obtained for the Standard Model generalized to two Higgs doublets. These four mass relations are obtained most simply in terms of the original fields in the Lagrangian, before spontaneousSU(2)×U(1) symmetry breaking is applied. Unlike the case of the Standard Model, the Higgs tadpoles of the two Higgs doublet theory do not furnish a complete set of mass relations, giving only three of the four.Work supported in part by the U.S. Department of Energy under Grant DE-FG02-84ER40158  相似文献   

13.
The mechanism behind electroweak symmetry breaking (EWSB) and the nature of dark matter (DM) are currently among the most important issues in high energy physics. Since a natural dark matter candidate is a weakly interacting massive particle or WIMP, with mass around the electroweak scale, it is clearly of interest to investigate the possibility that DM and EWSB are closely related. In the context of a very simple extension of the Standard Model, the inert doublet model, we show that dark matter could play a crucial role in the breaking of the electroweak symmetry. In this model, dark matter is the lightest component of an inert scalar doublet. The coupling of the latter with the Standard Model Higgs doublet breaks the electroweak symmetry at one-loop, à la Coleman–Weinberg. The abundance of dark matter, the breaking of the electroweak symmetry and the constraints from electroweak precision measurements can all be accommodated by imposing (an exact or approximate) custodial symmetry.  相似文献   

14.
In this paper we propose a possible explanation to the Fermion mass hierarchy problem by fitting the type-II seesaw mechanism into the Higgs doublet sector, such that their vacuum expectation values are hierarchal. We extend the Standard Model with two extra Higgs doublets as well as a spontaneously broken UX(1) gauge symmetry. All the fermion Yukawa couplings except that of the top quark are of O(10-2) in our model. Constraints on the parameter space of the model from low energy processes are studied. Besides, the lightest one of the neutral fermion fields, which is introduced to cancel the anomalies of the U(1)X gauge symmetry can be the cold dark matter candidate. We investigate its signature in the dark matter direct detection.  相似文献   

15.
We propose the generation of Standard Model fermion hierarchy by the extension of renormalizable SO(10) GUT with O(Ng) family gauge symmetry. In this scenario, Higgs representations of SO(10) also carry family indices and are called Yukawons. Vacuum expectation values of these Yukawon fields break GUT and family symmetry and generate MSSM Yukawa couplings dynamically. We have demonstrated this idea using \({\mathbf {10}}\oplus {\mathbf {210}} \oplus {\mathbf {126}} \oplus {\overline {\mathbf {126}}}\) Higgs irrep, ignoring the contribution of 120-plet which is, however, required for complete fitting of fermion mass-mixing data. The effective MSSM matter fermion couplings to the light Higgs pair are determined by the null eigenvectors of the MSSM-type Higgs doublet superfield mass matrix \(\mathcal {H}\). A consistency condition on the doublet ([1,2,±1]) mass matrix (\(\text {Det}(\mathcal {H})=\) 0) is required to keep one pair of Higgs doublets light in the effective MSSM. We show that the Yukawa structure generated by null eigenvectors of \(\mathcal {H}\) are of generic kind required by the MSSM. A hidden sector with a pair of (Sab; ?ab) fields breaks supersymmetry and facilitates \(D_{O(N_{g})}\hspace *{-1pt}=\) 0. SUSY breaking is communicated via supergravity. In this scenario, matter fermion Yukawa couplings are reduced from 15 to just 3 parameters in MSGUT with three generations.  相似文献   

16.
Dong-Won Jung 《Pramana》2007,69(5):789-793
In the extra dimensional scenarios with gauge fields in the bulk, the Kaluza-Klein (KK) gauge bosons can induce Nambu-Jona-Lasinio (NJL) type attractive fourfermion interactions, which can break electroweak symmetry dynamically with accompanying composite Higgs fields. We consider a possibility that electroweak symmetry breaking (EWSB) is triggered by both a fundamental Higgs and a composite Higgs arising in a dynamical symmetry breaking mechanism induced by a new strong dynamics. The resulting Higgs sector is a partially composite two-Higgs doublet model with specific boundary conditions on the coupling and mass parameters originating at a compositeness scale Λ. The phenomenology of this model is discussed including the collider phenomenology at LHC and ILC.   相似文献   

17.
We study a two-Higgs doublet model with four generalised CP symmetries in the scalar sector. Electroweak symmetry breaking leads automatically to spontaneous breaking of two of them. We require that these four CP symmetries can be extended from the scalar sector to the full Lagrangian and call this requirement the principle of maximal CP invariance. The Yukawa interactions of the fermions are severely restricted by this requirement. In particular, a single fermion family cannot be coupled to the Higgs fields. For two fermion families, however, this is possible. Enforcing the absence of flavour-changing neutral currents, we find degenerate masses in both families or one family massless and one massive. In the latter case the Lagrangian is highly symmetric, with the mass hierarchy being generated by electroweak symmetry breaking. Adding a third family uncoupled to the Higgs fields and thus keeping it massless we get a model which gives a rough approximation of some features of the fermions observed in Nature. We discuss a number of predictions of the model which may be checked in future experiments at the LHC.  相似文献   

18.
We derive cubic and quartic couplings of the Higgs singlet extension of the SM and the two Higgs doublet model. We also examine the number of CP violated couplings in a model with n Higgs doublet model and a model with ns Higgs singlets and nd Higgs doublets. We conclude that in order to reconstruct the Higgs potential with multi Higgs fields at the LHC and future colliders, to detect the cubic/quartic couplings is necessary.  相似文献   

19.
As a first step toward the study of the effects of radiative corrections on spontaneously broken potentials we consider the renormalization group equations for those parameters which determine the shape of the potential and the symmetry breaking patterns. As examples we consider the Higgs potential for a single scalar field and for the adjoint represention of SU(n). In the latter case we also obtain some results at the classical level - a new proof of the Michel conjecture, the Higgs mass spectrum and an explicit expression for the parameter that determines the symmetry breaking pattern.  相似文献   

20.
Within the Constrained Minimal Supersymmetric Standard Model (CMSSM) it is possible to predict the low energy gauge couplings and masses of the 3. generation particles from a few parameters at the GUT scale. In addition the MSSM predicts electroweak symmetry breaking due to large radiative corrections from Yukawa couplings, thus relating theZ 0 boson mass to the top quark mass. From ax 2 analysis, in which these constraints can be considered simultaneously, one can calculate the probability for each point in the MSGUT parameter space. The recently measured top quark mass prefers two solutions for the mixing angle in the Higgs sector: tanβ in the range between 1 and 3 or alternatively tanβ≈25?50. For both cases we find a uniquex 2 minimum in the parameter space. From the corresponding most probable parameters at the GUT scale, the masses of all predicted particles can be calculated at low energies using the RGE, albeit with rather large errors due to the logarithmic nature of the running of the masses and coupling constants. Our fits include full second order corrections for the gauge and Yukawa couplings, low energy threshold effects, contributions of all (s)particles to the Higgs potential and corrections tom b from gluinos and higgsinos, which exclude (in our notation) positive values of the mixing parameterμ in the Higgs potential for the large tanβ region. Further constraints can be derived from the branching ratio for the radiative (penguin) decay of theb-quark into and the lower limit on the lifetime of the universe, which requires the dark matter density due to the Lightest Super-symmetric Particle (LSP) not to overclose the universe. For the low tanβ solution these additional constraints can be fulfilled simultaneously for quite a large region of the parameter space. In contrast, for the high tanβ solution the correct value for theb rate is obtained only for small values of the gaugino scale and electroweak symmetry breaking is difficult, unless one assumes the minimal SU(5) to be a subgroup of a larger symmetry group, which is broken between the Planck scale and the unification scale. In this case small splittings in the Yukawa couplings are expected at the unification scale and electroweak symmetry breaking is easily obtained, provided the Yukawa coupling for the top quark is slightly above the one for the bottom quark, as expected e.g. if the larger symmetry group would be SO(10). For particles, which are most likely to have masses in the LEP II energy range, the cross sections are given for the various energy scenarios at LEP II. For low tanβ the production of the lightest Higgs boson, which is expected to have a mass below 103 GeV, is the most promising channel, while for large tanβ the production of charginos and/or neutralinos covers the preferred parameter space.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号