首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Progress in the development of a miniaturised microfluidic instrument for monitoring phosphorus in natural waters and wastewater is presented. The yellow colorimetric method for phosphate analysis has been transferred to a microfluidic chip configuration This simple method employs one reagent mixed in a 1:1 ratio with a sample to produce a yellow colour absorbing strongly below 400 nm. A stopped flow approach is used which, together with the very rapid kinetics and simple reagent stream, enables a very uncomplicated microfluidic manifold design to be adopted. The working wavelength is 380 nm to coincide with the peak output of a recently developed UV-LED narrow bandwidth light source. The limit of detection for the yellow method is 0.2 ppm with a dynamic linear range from 0-50 ppm possible. The reaction time at room temperature is less than 3 min, which means that up to 20 samples per hour can be analysed.  相似文献   

2.
Johann R  Renaud P 《Electrophoresis》2004,25(21-22):3720-3729
Selective transport and sorting of particles in microfluidic devices by electroosmosis is complicated due to superposition of uncontrolled hydrodynamic pressure contributions on the electroosmotic force. In this paper, we present a microfluidic concept for the reliable and simple separation and sorting of particles in a microchip by electroosmosis combined with pressure-driven flow. The presented device allows fluid quantities to be switched and particles to be sorted within a channel manifold using only a single power supply with fixed voltage and an electric switch. Consequently, chip operation and fluid switching procedure are greatly simplified compared to a situation, in which several independent power sources are used for flow balancing, as is the common procedure. With the triple-T channel design presented, backpressure flow disturbing the electrokinetic fluid and particle separation process is eliminated by introducing controlled opposed hydrodynamic flow of buffer from side channels. This pressure-driven flow is generated on-chip by setting up differences in the reservoir pressures in a defined manner. A detailed flow analysis based on the equivalence of fluid flow and electric current is performed and the conditions for reliable chip function are worked out.  相似文献   

3.
A novel method for studying unlabeled living mammalian cells based on their autofluorescence (AF) signal in a prototype microfluidic device is presented. When combined, cellular AF detection and microfluidic devices have the potential to facilitate high-throughput analysis of different cell populations. To demonstrate this, unlabeled cultured cells in microfluidic devices were excited with a 488 nm excitation light and the AF emission (> 505 nm) was detected using a confocal fluorescence microscope (CFM). For example, a simple microfluidic three-port glass microstructure was used together with conventional electroosmotic flow (EOF) to switch the direction of the fluid flow. As a means to test the potential of AF-based cell sorting in this microfluidic device, granulocytes were successfully differentiated from human red blood cells (RBCs) based on differences in AF. This study demonstrated the use of a simple microfabricated device to perform high-throughput live cell detection and differentiation without the need for cell-specific fluorescent labeling dyes and thereby reducing the sample preparation time. Hence, the combined use of microfluidic devices and cell AF may have many applications in single-cell analysis.  相似文献   

4.
Wang ZH  Meng YH  Ying PQ  Qi C  Jin G 《Electrophoresis》2006,27(20):4078-4085
A label-free protein microfluidic array for immunoassays based on the combination of imaging ellipsometry and an integrated microfluidic system is presented. Proteins can be patterned homogeneously on substrate in array format by the microfluidic system simultaneously. After preparation, the protein array can be packed in the microfluidic system which is full of buffer so that proteins are not exposed to denaturing conditions. With simple microfluidic channel junction, the protein microfluidic array can be used in serial or parallel format to analyze single or multiple samples simultaneously. Imaging ellipsometry is used for the protein array reading with a label-free format. The biological and medical applications of the label-free protein microfluidic array are demonstrated by screening for antibody-antigen interactions, measuring the concentration of the protein solution and detecting five markers of hepatitis B.  相似文献   

5.
Dutta D  Ramsey JM 《Lab on a chip》2011,11(18):3081-3088
Microchannels in microfluidic devices are frequently chemically modified to introduce specific functional elements or operational modalities. In this work, we describe a miniaturized hydraulic pump created by coating selective channels in a glass microfluidic manifold with a polyelectrolyte multilayer (PEM) that alters the surface charge of the substrate. Pressure-driven flow is generated due to a mismatch in the electroosmotic flow (EOF) rates induced upon the application of an electric field to a tee channel junction that has one arm coated with a positively charged PEM and the other arm left uncoated in its native state. In this design, the channels that generate the hydraulic pressure are interconnected via the third arm of the tee to a field-free analysis channel for performing pressure-driven separations. We have also shown that modifications in the cross-sectional area of the channels in the pumping unit can enhance the hydrodynamic flow through the separation section of the manifold. The integrated device has been demonstrated by separating Coumarin dyes in the field-free analysis channel using open-channel liquid chromatography under pressure-driven flow conditions.  相似文献   

6.
Wu CH  Yang RJ 《Electrophoresis》2006,27(24):4970-4981
This paper presents a T-form electrokinetic injection system for the discrete time-based loading and dispensing of samples of variable-volume in a microfluidic chip. A novel push-pull effect is produced during the loading and dispensing processes by the application of an appropriate control voltage distribution. The experimental and numerical results show that this push-pull loading technique produces compact sample plugs and hence improves the detection resolution of the microfluidic device. The injection system is integrated with a microflow switch, and a suitable voltage control scheme is proposed to guide the sample to the desired outlet port such that the microfluidic device can function as a microdispenser. The time-based variable-volume T-form injection method presented in this study is performed using a compact geometry and a simple control scheme and can be readily integrated with other microfluidic devices to form a microfluidic system capable of continuous monitoring and analysis of bioreactions in the life science and biochemistry fields.  相似文献   

7.
A downscaled solid phase (SPE) device applicable for sample preparation prior to ICP-MS monitoring, have been constructed making use of the lab on a chip concept. Standard photolithography and wet chemical etching were used to fabricate glass microfluidic devices accommodating three microchannels, each of them incorporating a defined section that could be packed with SPE materials; selective chelating resin. The microfluidic device was interfaced with the ICP-MS instrument throughout a low flow rate concentric nebuliser using a Teflon connector, and coupled with a flow injection manifold delivering samples and reagents via a manually operated splitting valve. The feasibility of the miniaturized prototype to perform SPE of trace metals was proved by analyzing trace metals, Cd, Co, and Ni, in seawater reference materials; CASS-2 and SLEW-1. The obtained result was in good agreement with the certified values. The device could be used as a remote miniaturized sample treatment for field work.  相似文献   

8.
An interface design is presented that facilitates automated sample introduction into an electrokinetic microchip, without perturbing the liquids within the microfluidic device. The design utilizes an interface flow channel with a volume flow resistance that is 0.54-4.1 x 10(6) times lower than the volume flow resistance of the electrokinetic fluid manifold used for mixing, reaction, separation, and analysis. A channel, 300 microm deep, 1 mm wide and 15-20 mm long, was etched in glass substrates to create the sample introduction channel (SIC) for a manifold of electrokinetic flow channels in the range of 10-13 microm depth and 36-275 microm width. Volume flow rates of up to 1 mL/min were pumped through the SIC without perturbing the solutions within the electrokinetic channel manifold. Calculations support this observation, suggesting a leakage flow to electroosmotic flow ratio of 0.1:1% in the electrokinetic channels, arising from 66-700 microL/min pressure-driven flow rates in the SIC. Peak heights for capillary electrophoresis separations in the electrokinetic flow manifold showed no dependence on whether the SIC pump was on or off. On-chip mixing, reaction and separation of anti-ovalbumin and ovalbumin could be performed with good quantitative results, independent of the SIC pump operation. Reproducibility of injection performance, estimated from peak height variations, ranged from 1.5-4%, depending upon the device design and the sample composition.  相似文献   

9.
Yang M  Yang J  Li CW  Zhao J 《Lab on a chip》2002,2(3):158-163
We have developed a simple method to generate a concentration gradient in a microfluidic device. This method is based on the combination of controlled fluid distribution at each intersection of a microfluidic network by liquid pressure and subsequent diffusion between laminas in the downstream microchannel. A fluid dynamic model taking into account the diffusion coefficient was established to simulate the on-chip flow distribution and diffusion. Concentration gradients along a distance of a few hundred micrometers were generated in a series of microchannels. The gradients could be varied by carefully regulating the liquid pressure applied to the sample injection vials. The observed concentration gradients of fluorescent dyes generated on the microfluidic channel are consistent with the theoretically predicted results. The microfluidic design described in this study may provide a new tool for applications based on concentration gradients, including many biological and chemical analyses such as cellular reaction monitoring and drug screening.  相似文献   

10.
The modern version of the process of removing redundant variables in an MCSCF optimization problem is studied on the basis of the manifold theory. It is shown that there exists a simple parametrization of the MCSCF orbital manifold that is convenient for computer implementation of quasi-Newton optimization schemes. A sequential unconstrained optimization technique for minimizing electronic energy with respect to local coordinates is described.  相似文献   

11.
12.
A way of using gravity flow to induce a linear convection within a microfluidic system is presented. It is shown and mathematically supported that tilting a 1 cm long covered microchannel is enough to generate flow rates up to 1000 nL.min(-1), which represents a linear velocity of 2.4 mm.s(-1). This paper also presents a method to monitor the microfluidic events occurring in a covered microchannel when a difference of pressure is applied to force a solution to flow in said covered microchannel, thanks to electrodes inserted in the microfluidic device. Gravity-induced flow monitored electrochemically is applied to the performance of a parallel-microchannel enzyme-linked immunosorbent assay (ELISA) of the thyroid-stimulating hormone (TSH) with electrochemical detection. A simple method for generating and monitoring fluid flows is described, which can, for instance, be used for controlling parallel assays in microsystems.  相似文献   

13.
A simple and efficient approach for concentration of charged molecules in microfluidic devices is described. The functional component of the system is a hydrogel microplug photopolymerized within the main channel of a microfluidic device. When an appropriately biased voltage is applied across the hydrogel, charged analyte molecules move from the source well toward the hydrogel. Transport of the analyte through the hydrogel is slow compared to its velocity in the microfluidic channel, however, and therefore it concentrates at the hydrogel/solution interface. For an uncharged hydrogel, a bias of 100 V leads to a approximately 500-fold enrichment of the DNA concentration within 150 s, while the same conditions result in an enrichment of only 50-fold for fluorescein. Somewhat lower enrichment factors are observed when a negatively charged hydrogel is used. A qualitative model is proposed to account for the observed behavior.  相似文献   

14.
The present paper reports the modeling and characterization of the physical sample dispersion process observed in rectangular microchannels when pressure-driven pumping is used. To explain experimental results provided by the silicon fluidic device constructed, two different mathematical models were tested. The first one is based on the diffusion–convection model, and the second one is based on the combination of ideal reactors. The silicon designed and constructed chip includes a microfluidic manifold with four inlet–outlet ports and a monolithically integrated optical flow cell. The microchannels, the optical flow cell, and the input–output ports were micromachined on a silicon wafer and then sealed with Pyrex glass anodically bonded. Optical windows were integrated in the chip, allowing simple absorbance–transmission measurements. Pressure-driven flows through fluidic channels were controlled via three-way solenoid valves and provided by an automatic microburette operating in aspiration mode. Experimentally obtained results demonstrate that the physical sample dispersion process can be easily modeled as a combination of a continuous stirred tank reactor and a plug-flow reactor.  相似文献   

15.
综述了近年来化学发光检测在微流控芯片中的应用.指出微流控芯片(又称为"芯片实验室"或者"微型全分析系统")因具有小型化、集成化和自动化等特点而在近20年来日益受到关注,而化学发光检测具有仪器结构简单、背景噪音低、操作和维护成本低等优点,非常适合用作微流控芯片的检测手段.  相似文献   

16.
整体柱富集技术在微流控芯片系统中的应用   总被引:1,自引:0,他引:1  
样品预处理技术是微流控芯片技术发展的瓶颈之一。整体材料是近几年在色谱领域发展起来的一种新型色谱填料,具有结构均匀、传质速度快、通透性好、制备过程简单等优点,被广泛用于微流控芯片系统中。该文综述了整体柱富集技术在微流控芯片系统中的应用进展,引用文献80篇。  相似文献   

17.
A novel method for fabricating micrometer sized gel patterns is described. The presented method involves spin-coating a pre-gel solution on a surface that was chemically treated to modulate its surface energy, creating highly hydrophobic areas on a hydrophilic substrate. Following spin-coating, the gel solution self organizes on the hydrophilic sites. This method offers the advantages of high resolution, self-alignment to pre-patterned electrodes, and a simple straightforward fabrication process. Minimum feature size achieved was approximately 20 μm. The characteristic shrinking and swelling times of gel patterns were measured and found to be around 0.6 s for swelling and 2 s for shrinking (for a 60 μm diameter gel) in agreement with the reduced response time expected for scaled down gel patterns. These results suggest the suitability of these gel patterns as valves or actuators in microfluidic devices. Micron-size gel patterns were also incorporated into microfluidic channels thus demonstrating a new approach to create simple, affordable, microfluidic devices, which incorporate “smart” hydrogels as building elements in a simple fashion.  相似文献   

18.
Kang Y  Wu X  Wang YN  Li D 《Analytica chimica acta》2008,626(1):97-103
A fluorescence-activated particle counting and sorting system is developed for lab-on-a-chip applications. This system integrates the microfluidic chip, fluorescence excitation and detection, electronic power switch control, and optical visualization. The automatic sorting function is achieved by electrokinetic flow switching, which is triggered by a pre-set fluorescent threshold. A direct current electric pulse is generated to dispense the fluorescent particles to the collection reservoir. A user-friendly software interface is developed for automatic real-time counting, sorting and visualization. The design of the disposable microfluidic chip is simple and easy for integration. This system represents a promising prototype for development of affordable and portable flow cytometric instruments.  相似文献   

19.
Liu AL  He FY  Wang K  Zhou T  Lu Y  Xia XH 《Lab on a chip》2005,5(9):974-978
We developed a facile and rapid one-step technique for design and fabrication of passive micromixers in microfluidic devices using a direct-printing process. A laser printing mechanism was dexterously adopted to pattern the microchannels with different gray levels using vector graphic software. With the present method, periodically ordered specific bas-relief microstructures can be easily fabricated on transparencies by a simple printing process. The size and shape of the resultant microstructures are determined by the gray level of the graphic software and the resolution of the laser printer. Patterns of specific bas-relief microstructures on the floor of a channel act as obstacles in the flow path for advection mixing, which can be used as efficient mixing elements. The mixing effect of the resultant micromixer in microfluidic devices was evaluated using CCD fluorescence spectroscopy. We found that the mixing performance depends strongly on the gray level values. Under optimal conditions, fast passive mixing with our periodic ordered patterns in microfluidic devices has been achieved at the very early stages of the laminar flow. In addition, fabrication of micromixers using the present versatile technique requires less than an hour. The present method is promising for fabrication of micromixers in microfluidic devices at low cost and without complicated devices and environment, providing a simple solution to mixing problems in the micro-total-analysis-systems field.  相似文献   

20.
This paper presents a novel optically addressed microactuator array (microfluidic "flash memory") with latched operation. Analogous to the address-data bus mediated memory address protocol in electronics, the microactuator array consists of individual phase-change based actuators addressed by localized heating through focused light patterns (address bus), which can be provided by a modified projector or high power laser pointer. A common pressure manifold (data bus) for the entire array is used to generate large deflections of the phase change actuators in the molten phase. The use of phase change material as the working media enables latched operation of the actuator array. After the initial light "writing" during which the phase is temporarily changed to molten, the actuated status is self-maintained by the solid phase of the actuator without power and pressure inputs. The microfluidic flash memory can be re-configured by a new light illumination pattern and common pressure signal. The proposed approach can achieve actuation of arbitrary units in a large-scale array without the need for complex external equipment such as solenoid valves and electrical modules, which leads to significantly simplified system implementation and compact system size. The proposed work therefore provides a flexible, energy-efficient, and low cost multiplexing solution for microfluidic applications based on physical displacements. As an example, the use of the latched microactuator array as "normally closed" or "normally open" microvalves is demonstrated. The phase-change wax is fully encapsulated and thus immune from contamination issues in fluidic environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号