首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
There are practical and academic situations that justify the study of calcium carbonate crystallization and especially of systems that are associated with organic matrices and a confined medium. Despite the fact that many different matrices have been studied, the use of well-behaved, thin organic films may provide new knowledge about this system. In this work, we have studied the growth of calcium carbonate particles on well-defined organic matrices that were formed by layer-by-layer (LbL) polyelectrolyte films deposited on phospholipid Langmuir-Blodgett films (LB). We were able to change the surface electrical charge density of the LB films by changing the proportions of a negatively charged lipid, the sodium salt of dimyristoyl-sn-glycero-phosphatidyl acid (DMPA), and a zwitterionic lipid, dimyristoyl-sn-glycero-phosphatidylethanolamine (DMPE). This affects the subsequent polyelectrolyte LbL film deposition, which also changes the the nature of the bonding (electrostatic interaction or hydrogen bonding). This approach allowed for the formation of calcium carbonate particles of different final shapes, roughnesses, and sizes. The masses of deposited lipids, polyelectrolytes, and calcium cabonate were quantified by the quartz crystal microbalance technique. The structures of obtained particles were analyzed by scanning electron microscopy.  相似文献   

2.
A comprehensive spectroscopic analysis consisting of Raman, infrared (IR) and near-infrared (NIR) spectroscopy was undertaken on two forms of calcium acetate with differing degrees of hydration. Monohydrate (Ca(CH(3)COO)(2).H(2)O) and half-hydrate (Ca(CH(3)COO)(2).0.5H(2)O) species were analysed. Assignments of vibrational bands due to the acetate anion have been made in all three forms of spectroscopy. Thermal analysis of the mineral was undertaken to follow its decomposition under a nitrogen atmosphere. Three major mass loss steps at approximately 120, 400 and 600 degrees C were revealed. These mass losses correspond very well to firstly, the loss of co-ordinated water molecules, and then the loss of water from the acetate anion, followed by finally the loss of carbon dioxide from the carbonate mineral to form a stable calcium oxide.  相似文献   

3.
Density functional theory (Perdew-Burke-Ernzerhof) based methods have been used to study the structure and hydration environment of the building blocks of CaCO 3 in aqueous solutions of calcium bicarbonate and calcium carbonate. Car-Parrinello molecular dynamics simulations of Ca(2+)/CO3(2-) and Ca (2+)/HCO3(-) in explicit water were performed to investigate the formation of CaCO3 and the hydration shell of the solvated hetero-ion pair. Our simulations show that the formation of the monomer of CaCO3 occurs with an associative mechanism and that the dominant building block of calcium (bi)carbonate in aqueous solution is Ca[eta(1)-(H)CO3](H2O)5, i.e., the preferred hydration number is five, while the (bi)carbonate is coordinated to the calcium in a monodentate mode. This result agrees with static calculations, where a hybrid approach using a combination of explicit solvent molecules and a polarizable continuum model has been applied to compute the solvation free energies of calcium bicarbonate species. Furthermore, the discrete-continuum calculations predict that the Ca(HCO3)2 and Ca(HCO3)3(-) species are stable in an aqueous environment preferentially as Ca(HCO3)2(H2O)4 and Ca(HCO3)3(H2O)2(-), respectively.  相似文献   

4.
聚合物基底上碳酸钙生物矿化的研究进展   总被引:1,自引:0,他引:1  
生物矿化作用是自然界广泛存在的一种现象。它是在生物体的严格控制下进行的,生物体从周围的环境中有选择地吸收各种元素用于构建生物体内具有特殊功能的无机结构。本文系统综述了聚合物膜上碳酸钙生物矿化的研究进展。详细介绍和比较了"直接合成法"和"通过无定性碳酸钙转化法"两种不同的矿化模式,并讨论了各矿化因素包括:酸性大分子、温度和聚合物基底种类等不同的影响。直接合成法:即通过酸性大分子的调节直接在大分子表面生成稳定晶型的碳酸钙。无定性碳酸钙转化法既在高度饱和的碳酸钙溶液中,在大分子表面生成一层无定性碳酸钙膜,然后将其在一定湿度下转化成一种或几种结晶形式的碳酸钙。前一种模式是一种常规的方法,研究得也最多。后一种模式相对较新,它简单快捷,而且影响因素少。  相似文献   

5.
Carbonate anion exchange reactions with water in the uranyl-carbonate and calcium-uranyl-carbonate aqueous systems have been investigated using computational methods. Classical molecular dynamics (MD) simulations with the umbrella sampling technique were employed to determine potentials of mean force for the exchange reactions of water and carbonate. The presence of calcium counter-ions is predicted to increase the stability of the uranyl-carbonate species in accordance with previous experimental observations. However, the free energy barrier to carbonate exchange with water is found to be comparable both in the presence and absence of calcium cations. Possible implications of these results for uranyl adsorption on mineral surfaces are discussed. Density functional theory (DFT) calculations were also used to confirm the trends observed in classical molecular dynamics simulations and to corroborate the validity of the potential parameters employed in the MD scheme.  相似文献   

6.
Fluoride in aquatic systems is increasing due to anthropogenic pollution, but little is known about how this fluoride affects organisms that live in and around aquatic habitats. Fluoride can bioaccumulate in structures comprised of calcium carbonate, such as shells and skeletons of both freshwater and saltwater species as diverse as snails, corals, and coccolithophorid algae. In this article, ion chromatography (IC) techniques are developed to detect and quantify fluoride in a matrix of calcium carbonate. Solid samples are dissolved in hydrochloric acid, pretreated to remove the majority of the chloride ions, and then analyzed using IC. With these methods, the 3σ limit of detection is 0.2 mg of fluoride/kg of calcium carbonate.  相似文献   

7.
In this work, a supramolecular hydrogel formed from N,N',N'-tris(3-pyridyl)-trimesic amide was reported to serve as the matrix for the growth of biominerals. The organic hydrogel scaffold contains nitrogen heterocyclic ring and amide groups that can bind anions of the mineral (specially here, carbonate ions and phosphate ions) through hydrogen bonding interactions and act as the biomineralization active sites for growing biominerals. Calcium carbonate nucleated on the site of the hydrogel fiber where carbonate ions bonded and left obvious hydrogel fiber prints on the obtained product. Calcium phosphate grew into curved platelike nanostructures along the hydrogel fibrous network. XRD pattern and FT-IR spectra confirmed the formation of minerals on the hydrogel. The results indicate that the hydrogen bonding interaction can provide strong enough binding force for the growth of the minerals on organic scaffolds. Our finding extends the organic scaffolds into biodegradable small molecule hydrogels and also extends the growth centers of the minerals from conventional carboxylate groups binding Ca(2+) to amide and pyridyl groups binding PO(4)(3-).  相似文献   

8.
The majority of invertebrate skeletal tissues are composed of the most stable crystalline polymorphs of CaCO(3), calcite, and/or aragonite. Here we describe a composite skeletal tissue from an ascidian in which amorphous and crystalline calcium carbonate coexist in well-defined domains separated by an organic sheath. Each biogenic mineral phase has a characteristic Mg content (5.9 and 1.7 mol %, respectively) and concentration of intramineral proteins (0.05 and 0.01 wt %, respectively). Macromolecular extracts from various biogenic amorphous calcium carbonate (ACC) skeletons are typically glycoproteins, rich in glutamic acid and hydroxyamino acids. The proteins from the crystalline calcitic phases are aspartate-rich. Macromolecules extracted from biogenic ACC induced the formation of stabilized ACC and/or inhibited crystallization of calcite in vitro. The yield of the synthetic ACC was 15-20%. The presence of Mg facilitated the stabilization of ACC: the protein content in synthetic ACC was 0.12 wt % in the absence of Mg and 0.07 wt % in the presence of Mg (the Mg content in the precipitate was 8.5 mol %). In contrast, the macromolecules extracted from the calcitic layer induced the formation of calcite crystals with modified morphology similar to that expressed by the original biogenic calcite. We suggest that specialized macromolecules and magnesium ions may cooperate in the stabilization of intrinsically unstable amorphous calcium carbonate and in the formation of complex ACC/calcite tissues in vivo.  相似文献   

9.
催化剂添加量对褐煤焦水蒸气气化反应性的影响   总被引:3,自引:0,他引:3  
在固定床反应器中研究了碱金属K和碱土金属Ca对褐煤焦水蒸气气化的催化效果,考察了煤焦的气化反应性随催化剂添加量的关系,并采用扫描电子显微镜结合X射线能谱分析仪(SEM EDX)和XRD技术分析了煤焦和焦样气化残渣的晶相组成和表面形态。实验结果表明,K的催化活性比Ca的高,煤焦的气化反应性随K和Ca添加量的增大而提高,K和Ca的负荷饱和度均为10%。添加K和Ca催化剂的原煤制焦后,K和Ca分布在煤焦的表面。原煤焦气化残渣中主要含钙铝黄长石。添加K的煤焦及其气化残渣中主要含钙铝黄长石和Ca3Si2O7,XRD没有检测到含K的晶体。当Ca的添加量从5%升高到10%时,煤焦表面有大量的CaO存在,但由于CaO发生团聚使其分散度降低。Ca添加量为10%的煤焦气化残渣中除了钙橄榄石和钙铝黄长石,还有未与矿物质反应的CaO和Ca(OH)2。  相似文献   

10.
Suppressed conductimetric detection ion chromatography (IC) was investigated for the separation and detection of common inorganic anions, calcium and magnesium by anion-exchange chromatography using a sodium carbonate-EDTA mobile phase. The formation of anionic Ca2+ -EDTA and Mg2+ -EDTA complexes allowed its separation from other inorganic anions opening the way for their simultaneous determination in a single chromatographic run. The effect of the pH, carbonate and EDTA concentrations in the eluent and the previous addition of EDTA to the samples has been studied. The optimised experimental conditions were applied to the determination of Ca2+ and Mg2+ in mineral waters with results in agreement with alternative ICP-MS methodologies.  相似文献   

11.
Stress development during drying of coatings produced from aqueous dispersions of calcium carbonate particles in the presence and absence of organic binders was studied using a controlled-environment stress apparatus that simultaneously monitored drying stress, weight loss, and relative humidity. Specifically, the influence of two organic binders on drying stress evolution was investigated: (1) carboxymethylcellulose, a water-soluble viscosifying aid, and (2) a styrene-butadiene latex emulsion of varying glass transition temperature. The stress histories exhibited three distinct regions. First, a period of stress rise was observed, which reflected the capillary tension exerted by the liquid on the particle network. Second, a maximum stress was observed. Third, it was followed by a period of either stress decay or rise depending on the organic species present. Significant differences in stress histories were observed between coatings containing soluble and nonsoluble binders. Maximum drying stresses (sigmamax) of 0.2-0.5 MPa were observed for coatings produced from pure calcium carbonate or calcium carbonate-latex suspensions, whereas coatings with carboxymethylcellulose exhibited substantially higher sigmamax values of 1-2 MPa. Upon drying, these coatings were quite hygroscopic, such that cyclic variations in relative humidity induced large cyclic changes in residual stress.  相似文献   

12.
The microstructure and composition of the layers of two giant avian eggshells were investigated using a combination of scanning electron microscopy, electron probe microanalyses, and X-ray absorption near-edge structure spectroscopy (XANES). The two species have some similarities and differences in their microstructure and composition; the composition is not homogeneous throughout the eggshell thickness. XANES studies show that sulfur is associated with amino acids in the inner organic membranes, whereas in the mineralised layers the sulfur is mainly associated with sulfated polysaccharides. These results are similar to those obtained on chicken eggshells, and confirm the active role of sulfated acidic polysaccharides in biomineralisation processes of carbonate skeletons.  相似文献   

13.
The mechanisms of adsorption and association for sodium carboxymethylcellulose (NaCMC) in calcium carbonate suspensions have been determined from isothermal calorimetry and adsorption measurements. The equilibrium adsorption isotherms were determined by two different methods of separation; a depletion method and a serum exchange method. The enthalpy of dilution for NaCMC was determined on supernatants obtained from the calcium carbonate suspensions in order to investigate the interaction between NaCMC and dissolved species from the mineral. For comparison, NaCMC was injected into CaCl(2) solutions in order to determine the role of calcium ions in the adsorption process. The initial part of the adsorption isotherm showed a quasi-infinite slope indicating a high affinity for the NaCMC to the calcium carbonate surface, which was significantly reduced when anionic sodium polyacrylate was preadsorbed onto the calcium carbonate implying competitive adsorption. An endothermic enthalpy change was observed between the NaCMC and the calcium carbonate surface, suggesting attachment of the carboxylic acid groups onto the hydrated calcium sites. A similar endothermic enthalpy was observed when NaCMC was injected into CaCl(2) solutions or supernatants obtained from the calcium carbonate suspensions, indicating a complexation of carboxylic acid groups and hydrated calcium ions. It was concluded that the mechanisms of interaction of NaCMC in calcium carbonate suspensions are primarily an association between NaCMC and Lewis acid sites on the calcium carbonate surface and the formation of NaCMC-Ca(2+) complexes in the bulk solution, both of which will be affected by the amount of anionic sodium polyacrylate present.  相似文献   

14.
Neutron activation analysis (NAA) and dual energy X-ray absorptiometry (DEXA) have been used to study the effects of different calcium supplements on osteoporosis, including calcium carbonate, calcium threonate, calcium gluconate, calcium lactate, calcium acetate and a traditional Chinese medicine. Animal test results showed that calcium carbonate, calcium gluconate, calcium acetate and the Chinese medicine notably increased osteoporotic rat's femoral bone mineral density (BMD). Also, calcium carbonate, calcium acetate and the Chinese medicine significantly increased osteoporotic rat's vertebral BMD. But calcium L-threonate and calcium lactate had no such effects. Calcium gluconate, calcium acetate and the Chinese medicine improved the bone mechanical intensity of osteoporotic rats. The results of NAA showed that the loss of elements in spongy bones was more seriously than that in compact bone and was difficult to be improved. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

15.
The role of stabilizing agents in the interaction between styrene/butadiene latex and calcium carbonate particles has been studied using isothermal titration calorimetry (ITC) and an electrokinetic sonic amplitude (ESA) technique. It is demonstrated that the polyacrylate sodium salt (dispersing agent, referred to as NaPA) used as stabilizing agent for the calcium carbonate suspensions principally affects the interfacial properties of the calcite surface. An electrostatic barrier is created and this decreases the attractive interactions between the latex and the negatively charged mineral surface. The total enthalpy change observed when an emulsion of styrene/butadiene particles substantially free from surfactant was added to the dispersed calcium carbonate could be described via a relatively complex path. The process included (i) an exothermic response from the association of the latex particles (adsorption process) with the dispersed calcium carbonate surface and (ii) an endothermic bulk phase effect due to the adsorption on the latex particles of dissolved species originating from the calcium carbonate. Stabilization of the latex particles with sodium dodecyl benzene sulfonate (SDBS) or a non-ionic fatty alcohol ethoxylate surfactant did not significantly change the enthalpy of interaction. It was further demonstrated that SDBS had a very weak affinity for the dispersed calcium carbonate particles and that dissolution of species, such as calcium ions, from the calcium carbonate surface, allows further adsorption of SDBS onto the latex particles.  相似文献   

16.
利用X射线吸收精细结构光谱(XANES)研究了过碱硫化烷基酚钙与二烷基二硫代磷酸锌(ZDDP)复配使用时对ZDDP形成摩擦膜的表面化学行为的影响, 并提出了其和ZDDP的相互作用机制. 结果表明, 在ZDDP中加入过碱硫化烷基酚钙后完全改变了ZDDP单独使用时形成摩擦膜的结构, 摩擦膜中含有一定数量的钙离子, 其结构以磷酸钙为主; 对较高碱值的过碱硫化烷基酚钙, 在高浓度下使用时, 在摩擦膜形成的同时观测到碳酸钙颗粒的沉积. 此外, ZDDP和过碱硫化烷基酚钙共同使用时形成的摩擦膜厚度减小. 摩擦膜特性的改变是ZDDP和过碱硫化烷基酚钙复配体系抗磨性能变差的主要原因.  相似文献   

17.
Two cement pastes, commonly used in concrete formulations, were characterised by IGC at 35-80 degrees C before and after coating with an epoxy resin and a hardener. The cements are mixtures of hydrates in various proportions, such as calcium silicate hydrate (CaO-SiO2-H2O) and calcium hydroxide Ca(OH)2. Apolar and polar probes were used to determine the dispersive and acid-base characteristics of the cement pastes. These materials have high surface energy as judged from the dispersive contribution to the surface free energy (gamma(s)d) values lying in the 50-70 mJ/m2 range at 60-80 degrees C. Examination of the specific interactions permitted to show that the cement pastes are strongly amphoteric species with a substantial predominant Lewis basicity that is in line with the basic pH of their aqueous suspensions. Following coating with an epoxy resin (DGEBA) and a hardener (triethylene tetramine), the surface energy of the cements decreases substantially with the mass loading of the organic material. The surface thermodynamic properties were also correlated with the surface chemical composition as determined by X-ray photoelectron spectroscopy.  相似文献   

18.
胆盐与磷酸钙的相互作用   总被引:2,自引:0,他引:2  
胆汁的pH条件下(pH=6~8),应该生成无定形磷酸钙(ACP),而在胆结石中磷酸钙通常以羟基磷灰石的形式出现.利用谱学方法研究了ACP与胆盐的作用.结果表明,胆盐以胶团的形式与ACP作用,在溶液中形成复合胶团,使其溶解度增加.不同类型胆盐与ACP的作用能力不同:脱氧胆酸钠(NaDC) > 牛磺胆酸钠(NaTC) > 胆酸钠(NaC).胆盐与ACP中结合钙的亲和能力大于结合钙的亲和能力,使ACP在胆汁的环境下容易转化为羟基磷灰石.  相似文献   

19.
A quick method for determination of equilibrium temperature of high temperature reactions, which is inexpensive and suitable for small industrial laboratories, is reported. Reaction of high temperature dissociation of calcium carbonate is used as example for quick method application. The method is based on calorimetric measurement, Hess Law, and thermodynamic calculations. The calibrated calorimeter is used to determine enthalpy change for reactions CaCO3(s)?+?HCl(l), Ca(s)?+?2HCl(l), and CaO(s)?+?2HCl(l). By application of Hess??s energy cycle, enthalpies of formation of calcium carbonate and calcium oxide were determined. Acquired results were used to calculate enthalpy change for carbonate dissociation reaction. Calculated enthalpy change value was used for free energy change in dependence of temperature and also for equilibrium constant in dependence of temperature calculation using equations derived from basic thermodynamic equations. Using this method, equilibrium temperature for calcium carbonate dissociation reaction is found to be equal to 1154.14?K, which confirms accuracy of the method.  相似文献   

20.
Calcium carbonate has evoked interest owing to its use as a biomaterial, and for its potential in biomineralization. Three polymorphs of calcium carbonate, i.e. calcite, aragonite, and vaterite were synthesized. Three conventional bulk analysis techniques, Fourier transform infrared (FTIR), X‐ray diffraction (XRD), and SEM, were used to confirm the crystal phase of each polymorphic calcium carbonate. Two surface analysis techniques, X‐ray photoelectron spectroscopy (XPS) and time‐of‐flight secondary ion mass spectroscopy (TOF‐SIMS), were used to differentiate the surfaces of these three polymorphs of calcium carbonate. XPS results clearly demonstrate that the surfaces of these three polymorphs are different as seen in the Ca(2p) and O(1s) core‐level spectra. The different atomic arrangement in the crystal lattice, which provides for a different chemical environment, can explain this surface difference. Principal component analysis (PCA) was used to analyze the TOF‐SIMS data. Three polymorphs of calcium carbonate cluster into three different groups by PCA scores. This suggests that surface analysis techniques are as powerful as conventional bulk analysis to discriminate calcium carbonate polymorphs. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号