首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electrochemical, 1H NMR, and optical studies on mesophile Pseudomonas aeruginosa cytochrome c551, its single (F34Y) and quintuple (F7A/V13M/F34Y/E43Y/V78I) mutants, and thermophile Hydrogenobacter thermophilus cytochrome c552 at wide temperature range demonstrated that the stable protein exhibits the low redox potential predominantly due to the enthalpic contribution to the redox reaction. The overall stability of the oxidized form was shown to determine the stability of the Fe-methionine coordination bond, which then directly regulates the redox function.  相似文献   

2.
Cytochrome c6A is a unique dithio-cytochrome of green algae and plants. It has a very similar core structure to that of bacterial and algal cytochromes c6 but is unable to fulfill the same function of transferring electrons from cytochrome f to photosystem I. A key feature is that its heme midpoint potential is more than 200 mV below that of cytochrome c6 despite having His and Met as axial heme-iron ligands. To identify the molecular origins of the difference in potential, the structure of cytochrome c6 from the cyanobacterium Phormidium laminosum has been determined by X-ray crystallography and compared with the known structure of cytochrome c6A. One salient difference of the heme pockets is that a highly conserved Gln (Q51) in cytochrome c6 is replaced by Val (V52) in c6A. Using protein film voltammetry, we found that swapping these residues raised the c6A potential by +109 mV and decreased that of c6 by almost the same extent, -100 mV. X-ray crystallography of the V52Q protein showed that the Gln residue adopts the same configuration relative to the heme as in cytochrome c6 and we propose that this stereochemistry destabilizes the oxidized form of the heme. Consequently, replacement of Gln by Val was probably a key step in the evolution of cytochrome c6A from cytochrome c6, inhibiting reduction by the cytochrome b6f complex and facilitating establishment of a new function.  相似文献   

3.
余翀天  郭寅龙  吕龙  王韵华  姚萍  黄仲贤 《中国化学》2002,20(12):1540-1545
Cytochromeb5(Cytb5)isfoundbothasacompo nentofthemicrosomalmembranesandasasolubleforminerythrocytes .Itplaysanimportantroleinbiologicalsystems ,inwhichCytb5functionsasanelectroncarrier,participatinginaseriesofelectron transferprocesses ,in cludingreductionof…  相似文献   

4.
The mutation sites of the four mutants F35Y, P40V, V45E and V45Y of cytochrome b5 are located at the edge of the heme-binding pocket. The solvent accessible areas of the “pocket inte-rior“ of the four mutants and the wild-type cytochrome b5 have been calculated based on their crystal structures at high resolu-tion. The change in the hydrophobicity of the heme-binding pocket resulting from the mutation can be quantitatively de-scribed using the difference of the solvent accessible area of the “pocket interior“ of each mutant from that of the wild-type cy-tochrome b5. The influences of the hydrophobicity of the heme-binding pocket on the protein stability and redox potential are discussed.  相似文献   

5.
Cytochromes of the c type with histidine-methionine (His-Met) heme axial ligation play important roles in electron-transfer reactions and in enzymes. In this work, two series of cytochrome c mutants derived from Pseudomonas aeruginosa (Pa c-551) and from the ammonia-oxidizing bacterium Nitrosomonas europaea (Ne c-552) were engineered and overexpressed. In these proteins, point mutations were induced in a key residue (Asn64) near the Met axial ligand; these mutations have a considerable impact both on heme ligand-field strength and on the Met orientation and dynamics (fluxionality), as judged by low-temperature electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) spectra. Ne c-552 has a ferric low-spin (S = 1/2) EPR signal characterized by large g anisotropy with g(max) resonance at 3.34; a similar large g(max) value EPR signal is found in the mitochondrial complex III cytochrome c1. In Ne c-552, deletion of Asn64 (NeN64Delta) changes the heme ligand field from more axial to rhombic (small g anisotropy and g(max) at 3.13) and furthermore hinders the Met fluxionality present in the wild-type protein. In Pa c-551 (g(max) at 3.20), replacement of Asn64 with valine (PaN64V) induces a decrease in the axial strain (g(max) at 3.05) and changes the Met configuration. Another set of mutants prepared by insertion (ins) and/or deletion (Delta) of a valine residue adjacent to Asn64, resulting in modifications in the length of the axial Met-donating loop (NeV65Delta, NeG50N/V65Delta, PaN50G/V65ins), did not result in appreciable alterations of the originally weak (Ne c-552) or very weak (Pa c-551) axial field but had an impact on Met orientation, fluxionality, and relaxation dynamics. Comparison of the electronic fingerprints in the overexpressed proteins and their mutants reveals a linear relationship between axial strain and average paramagnetic heme methyl shifts, irrespective of Met orientation or dynamics. Thus, for these His-Met axially coordinated Fe(III), the large g(max) value EPR signal does not represent a special case as is observed for bis-His axially coordinated Fe(III) with the two His planes perpendicular to each other.  相似文献   

6.
Axial iron ligation and protein encapsulation of the heme cofactor have been investigated as effectors of the reduction potential (E degrees ') of cytochrome c through direct electrochemistry experiments. Our approach was that of partitioning the E degrees ' changes resulting from binding of imidazole, 2-methyl-imidazole, ammonia, and azide to both cytochrome c and microperoxidase-11 (MP11), into the enthalpic and entropic contributions. N-Acetylmethionine binding to MP11 was also investigated. These ligands replace Met80 and a water molecule axially coordinated to the heme iron in cytochrome c and MP11, respectively. This factorization was achieved through variable temperature E degrees ' measurements. In this way, we have found that (i) the decrease in E degrees ' of cytochrome c due to Met80 substitution by a nitrogen-donor ligand is almost totally enthalpic in origin, as a result of the stronger electron donor properties of the exogenous ligand which selectively stabilize the ferric state; (ii) on the contrary, the binding of the same ligands and N-acetylmethionine to MP11 results in an enthalpic stabilization of the reduced state, whereas the entropic effect invariably decreases E degrees ' (the former effect prevails for the methionine ligand and the latter for the nitrogenous ligands). A comparison of the reduction thermodynamics of cytochrome c and the MP11 adducts offers insight on the effect of changing axial heme ligation and heme insertion into the folded polypeptide chain. Principally, we have found that the overall E degrees ' increase of approximately 400 mV, comparing MP11 and native cytochrome c, consists of two opposite enthalpic and entropic terms of approximately +680 and -280 mV, respectively. The enthalpic term includes contributions from both axial methionine binding (+300 mV) and protein encapsulation of the heme (+380 mV), whereas the entropic term is almost entirely manifest at the stage of axial ligand binding. Both terms are dominated by the effects of water exclusion from the heme environment.  相似文献   

7.
We have measured the low temperature (T = 20 K) absorption spectra of the N52A, N52V, N52I, Y67F, and N52AY67F mutants of ferrous Saccharomyces cerevisiae (baker's yeast) cytochrome c. All the bands in the Q0- and Q(v)-band region are split, and the intensity distributions among the split bands are highly asymmetric. The spectra were analyzed by a decomposition into Voigtian profiles. The spectral parameters thus obtained were further analyzed in terms of the vibronic coupling model of Schweitzer-Stenner and Bigman (Schweitzer-Stenner, R.; Bigman, D. J. Phys. Chem. B 2001, 7064-7073) to identify parameters related to electronic and vibronic perturbations of the heme macrocycle. We report that the electronic perturbation is of B(1g) symmetry and reflects the heterogeneity of the electric field at the heme, that is, the difference between the gradients along the perpendicular N-Fe-N axis of the heme core. We found that all the investigated mutations substantially increase this electronic perturbation, so that the spectral properties become similar to those of horse heart cytochrome c. Moreover, the electronic perturbation was found to correlate nonlinearly with the enthalpy changes associated with the reduction of the heme iron. Group theoretical arguments are invoked to propose a simple model which explains how a perturbation of the obtained symmetry can stabilize the reduced state of the heme iron. Finally, vibronic coupling parameters obtained from the analysis of the Q(v)-band region suggest that the investigated mutations decrease the nonplanar deformations of the heme group. This finding was reproduced by a normal mode structural decomposition (NSD) analysis of the N52V and N52VY67F heme conformations obtained from a 1 ns molecular dynamics simulation. We argue that the reduced nonplanarity contributes to the stabilization of the reduced state.  相似文献   

8.
The tetraheme cytochrome c(554) (cyt c(554)) from Nitrosomonas europaea is an essential electron transfer component in the biological oxidation of ammonia. The protein contains one 5-coordinate heme and three bis-His coordinated hemes in a 3D arrangement common to a newly characterized class of multiheme proteins. The ligand binding, electrochemical properties, and heme-heme interactions are investigated with M?ssbauer and X- and Q-band (parallel/perpendicular mode) EPR spectroscopy. The results indicate that the 5-coordinate heme will not bind the common heme ligands, CN(-), F(-), CO, and NO in a wide pH range. Thus, cyt c(554) functions only in electron transfer. Analysis of a series of electrochemically poised and chemically reduced samples allows assignment of reduction potentials for heme 1 through 4 of +47, +47, -147, and -276 mV, respectively. The spectroscopic results indicate that the hemes are weakly exchange-coupled (J approximately -0.5 cm(-)(1)) in two separate pairs and in accordance with the structure: hemes 2/4 (high-spin/low-spin), hemes 1/3 (low-spin/low-spin). There is no evidence of exchange coupling between the pairs. A comparison of the reduction potentials between homologous hemes of cyt c(554) and other members of this new class of multiheme proteins is discussed. Heme 1 has a unique axial N(delta)-His coordination which contributes to a higher potential relative to the homologous hemes of hydroxylamine oxidoreductase (HAO) and the split-Soret cytochrome. Heme 2 is 300 mV more positive than heme 4 of HAO, which is attributed to hydroxide coordination to heme 4 of HAO.  相似文献   

9.
Electron paramagnetic resonance (EPR) spectra of variants of Hydrogenobacter thermophilus cytochrome c(552) (Ht c-552) and Pseudomonas aeruginosa cytochrome c(551) (Pa c-551) are analyzed to determine the effect of heme ruffling on ligand-field parameters. Mutations introduced at positions 13 and 22 in Ht c-552 were previously demonstrated to influence hydrogen bonding in the proximal heme pocket and to tune reduction potential (E(m)) over a range of 80 mV [Michel, L. V.; Ye, T.; Bowman, S. E. J.; Levin, B. D.; Hahn, M. A.; Russell, B. S.; Elliott, S. J.; Bren, K. L. Biochemistry 2007, 46, 11753-11760]. These mutations are shown here to also increase heme ruffling as E(m) decreases. The primary effect on electronic structure of increasing heme ruffling is found to be a decrease in the axial ligand-field term Δ/λ, which is proposed to arise from an increase in the energy of the d(xy) orbital. Mutations at position 7, previously demonstrated to influence heme ruffling in Pa c-551 and Ht c-552, are utilized to test this correlation between molecular and electronic structure. In conclusion, the structure of the proximal heme pocket of cytochromes c is shown to play a role in determining heme conformation and electronic structure.  相似文献   

10.
Bren KL  Kellogg JA  Kaur R  Wen X 《Inorganic chemistry》2004,43(25):7934-7944
NMR spectroscopy has become a vital tool for studies of protein conformational changes and dynamics. Oxidized Fe(III)cytochromes c are a particularly attractive target for NMR analysis because their paramagnetism (S = (1)/(2)) leads to high (1)H chemical shift dispersion, even for unfolded or otherwise disordered states. In addition, analysis of shifts induced by the hyperfine interaction reveals details of the structure of the heme and its ligands for native and nonnative protein conformational states. The use of NMR spectroscopy to investigate the folding and dynamics of paramagnetic cytochromes c is reviewed here. Studies of nonnative conformations formed by denaturation and by anomalous in vivo maturation (heme attachment) are facilitated by the paramagnetic, low-spin nature of native and nonnative forms of cytochromes c. Investigation of the dynamics of folded cytochromes c also are aided by their paramagnetism. As an example of this analysis, the expression in Escherichia coli of cytochrome c(552) from Nitrosomonas europaea is reported here, along with analysis of its unusual heme hyperfine shifts. The results are suggestive of heme axial methionine fluxion in N. europaea ferricytochrome c(552). The application of NMR spectroscopy to investigate paramagnetic cytochrome c folding and dynamics has advanced our understanding of the structure and dynamics of both native and nonnative states of heme proteins.  相似文献   

11.
采用共振拉曼光谱技术研究了细胞色素c一次突变体(WT)及其突变体Y67F和N52I在低频区的光谱特征。结果表明,以苯丙氨酸替代WT中酪氨酸残基Tyr67并没有明显影响血红素丙氨酸侧基周围多肽氨基酸残基的构象,而异亮氨酸对天冬酰胺残基Asn52的取代则较大程度地改变了蛋白质内部水分子与周围氨基酸残基间的氢键作用和多肽空腔的疏水性,进而使氨基酸残基和血素的构象相应发生调变。两种取代都导致形成血红素周围空腔的多肽氨基酸残基构象的变化。  相似文献   

12.
Cyclic voltammetry experiments were carried out on native Saccharomyces cerevisiae iso-1-cytochrome c and its C102T/N62C variant immobilized on bare polycrystalline gold electrode through the S-Au bond formed by a surface cysteine. Experiments were carried out at different temperatures (5-65 degrees C) and pH values (1.5-7). The E degrees ' value at pH 7 (+370 mV vs SHE) is approximately 100 mV higher than that for the protein in solution. This difference is enthalpic in origin and is proposed to be the result of the electrostatic repulsion among the densely packed molecules onto the electrode surface. Two additional electrochemical waves are observed upon lowering the pH below 5 (E degrees ' = +182 mV) and 3 (E degrees ' = +71 mV), which are attributed to two conformers (referred to as "intermediate" and "acidic", respectively) featuring an altered heme axial ligation. This is the first determination of the reduction potential for low-pH conformers of cytochrome c in the absence of denaturants. Since the native form of cytochrome c can be restored, bringing back the pH to neutrality, the possibility offered by this transition to reversibly modulate the redox potential of cytochrome c is appealing for bioelectronic applications. The immobilized C102T/N62C variant, which differs from the native protein in the orientation of the heme group with respect to the electrode, shows very similar reduction thermodynamics. For both species, the rate constant for electron transfer between the heme and the electrode increases for the acidic conformer, which is also found to act as a biocatalytic interface for dioxygen reduction.  相似文献   

13.
Wen X  Bren KL 《Inorganic chemistry》2005,44(23):8587-8593
Heme axial methionine ligands in ferricytochromes c552 from Hydrogenobacter thermophilus (HT) and Nitrosomonas europaea, both members of the cyt c8 family, display fluxional behavior. The ligand motion, proposed to be inversion at sulfur, results in an unusually small range of hyperfine shifts for heme substituents in these proteins. Herein, heme axial Met fluxion is induced in a structurally homologous cytochrome c551 from Pseudomonas aeruginosa (PA) by substituting heme pocket residue Asn64 with Gln. The mutant, PA-N64Q, displays a highly compressed range of heme substituent hyperfine shifts, temperature-dependent heme methyl resonance line broadening, low rhombic magnetic anisotropy, and a magnetic axes orientation consistent with Met orientational averaging. Analysis of NMR properties of PA-N64Q demonstrates that the heme pocket of the mutant resembles that of HT. This result confirms the importance of peripheral interactions and, in particular, residue 64 in determining axial Met orientation and heme electronic structure in proteins in the cyt c8 family.  相似文献   

14.
Molecular recognition in (+)-alpha-pinene oxidation by cytochrome P450cam   总被引:1,自引:0,他引:1  
Oxygenated derivatives of the monoterpene (+)-alpha-pinene are found in plant essential oils and used as fragrances and flavorings. (+)-alpha-Pinene is structurally related to (+)-camphor, the natural substrate of the heme monooxygenase cytochrome P450(cam) from Pseudomonas putida. The aim of the present work was to apply the current understanding of P450 substrate binding and catalysis to engineer P450(cam) for the selective oxidation of (+)-alpha-pinene. Consideration of the structures of (+)-camphor and (+)-alpha-pinene lead to active-site mutants containing combinations of the Y96F, F87A, F87L, F87W, and V247L mutations. All mutants showed greatly enhanced binding and rate of oxidation of (+)-alpha-pinene. Some mutants had tighter (+)-alpha-pinene binding than camphor binding by the wild-type. The most active was the Y96F/V247L mutant, with a (+)-alpha-pinene oxidation rate of 270 nmol (nmol of P450(cam))(-)(1) min(-)(1), which was 70% of the rate of camphor oxidation by wild-type P450(cam). Camphor is oxidized by wild-type P450(cam) exclusively to 5-exo-hydroxycamphor. If the gem dimethyl groups of (+)-alpha-pinene occupied similar positions to those found for camphor in the wild-type structure, (+)-cis-verbenol would be the dominant product. All P450(cam) enzymes studied gave (+)-cis-verbenol as the major product but with much reduced selectivity compared to camphor oxidation by the wild-type. (+)-Verbenone, (+)-myrtenol, and the (+)-alpha-pinene epoxides were among the minor products. The crystal structure of the Y96F/F87W/V247L mutant, the most selective of the P450(cam) mutants initially examined, was determined to provide further insight into P450(cam) substrate binding and catalysis. (+)-alpha-Pinene was bound in two orientations which were related by rotation of the molecule. One orientation was similar to that of camphor in the wild-type enzyme while the other was significantly different. Analysis of the enzyme/substrate contacts suggested rationalizations of the product distribution. In particular competition rather than cooperativity between the F87W and V247L mutations and substrate movement during catalysis were proposed to be major factors. The crystal structure lead to the introduction of the L244A mutation to increase the selectivity of pinene oxidation by further biasing the binding orientation toward that of camphor in the wild-type structure. The F87W/Y96F/L244A mutant gave 86% (+)-cis-verbenol and 5% (+)-verbenone. The Y96F/L244A/V247L mutant gave 55% (+)-cis-verbenol but interestingly also 32% (+)-verbenone, suggesting that it may be possible to engineer a P450(cam) mutant that could oxidize (+)-alpha-pinene directly to (+)-verbenone. Verbenol, verbenone, and myrtenol are naturally occurring plant fragrance and flavorings. The preparation of these compounds by selective enzymatic oxidation of (+)-alpha-pinene, which is readily available in large quantities, could have applications in synthesis. The results also show that the protein engineering of P450(cam) for high selectivity of substrate oxidation is more difficult than achieving high substrate turnover rates because of the subtle and dynamic nature of enzyme-substrate interactions.  相似文献   

15.
The function of heme proteins is, to a significant extent, influenced by the ligand field probed by the heme iron, which itself can be affected by deformations of the heme macrocycle. The exploration of this field is difficult because the heme structure obtained from X-ray crystallography is not resolved enough to unambiguously identify structural changes on the scale of 10(-2) A. However, asymmetric deformations in this order of magnitude affect the depolarization ratio of the resonance Raman lines assignable to normal vibrations of the heme group. We have measured the dispersion of the depolarization ratios of four structure sensitive Raman bands (i.e., nu4, nu11, nu21, and nu28) in yeast iso-1-ferrocytochrome c and its mutants N52V, Y67F, and N52VY67F with B- and Q-band excitation. The DPR dispersion of all bands indicates the presence of asymmetric in-plane and out-of-plane deformations. The replacement of the polar tyrosine residue at position 67 by phenylalanine significantly increases the triclinic B2g deformation, which involves a distortion of the pyrrole symmetry. We relate this deformation to changes of the electronic structure of pyrrole A, which modulates the interaction between its propionate substituents and the protein environment. This specific heme deformation is eliminated in the double mutant N52VY67F. The additional substitution of N52 by valine induces a tetragonal B1g deformation which involves asymmetric changes of the Fe-N distances and increases the rhombicity of the ligand field probed by the heme iron. This heme deformation might be caused by the elimination of the water-protein hydrogen-bonding network in the heme cavity. The single mutation N52V does not significantly perturb the heme symmetry, but a small B1g deformation is consistent with our data and the heme structure obtained from a 1 ns molecular dynamics simulation of the protein.  相似文献   

16.
Pardo-Yissar V  Katz E  Willner I  Kotlyar AB  Sanders C  Lill H 《Faraday discussions》2000,(116):119-34; discussion 171-90
A series of single-cysteine-containing cytochrome c, Cyt c, heme proteins including the wild-type Cyt c (from Saccharomyces cerevisiae) and the mutants (V33C, Q21C, R18C, G1C, K9C and K4C) exhibit direct electrical contact with Au-electrodes upon covalent attachment to a maleimide monolayer associated with the electrode. With the G1C-Cyt c mutant, which includes the cysteine residue in the polypeptide chain at position 1, the potential-induced switchable control of the interfacial electron transfer was observed. This heme protein includes a positively charged protein periphery that surrounds the attachment site and faces the electrode surface. Biasing of the electrode at a negative potential (-0.3 V vs. SCE) attracts the reduced Fe(II)-Cyt c heme protein to the electrode surface. Upon the application of a double-potential-step chronoamperometric signal onto the electrode, where the electrode potential is switched to +0.3 V and back to -0.3 V, the kinetics of the transient cathodic current, corresponding to the re-reduction of the Fe(III)-Cyt c, is controlled by the time interval between the oxidative and reductive potential steps. While a short time interval results in a rapid interfacial electron-transfer, ket1 = 20 s-1, long time intervals lead to a slow interfacial electron transfer to the Fe(III)-Cyt c, ket2 = 1.5 s-1. The fast interfacial electron-transfer rate-constant is attributed to the reduction of the surface-attracted Fe(III)-Cyt c. The slow interfacial electron-transfer rate constant is attributed to the electrostatic repulsion of the positively charged Cyt c from the electrode surface, resulting in long-range electron transfer exhibiting a lower rate constant. At intermediate time intervals between the oxidative and reductive steps, two populations of Cyt c, consisting of surface-attracted and surface-repelled heme proteins, are observed. Crosslinking of a layered affinity complex between the Cyt c and cytochrome oxidase, COx, on an Au-electrode yields an electrically-contacted, integrated, electrode for the four-electron reduction of O2 to water. Kinetic analysis reveals that the rate-limiting step in the bioelectrocatalytic reduction of O2 by the integrated Cyt c/COx electrode is the primary electron transfer from the electrode support to the Cyt c units.  相似文献   

17.
The present investigation reports the first experimental measurements of the reorganization energy of unfolded metalloprotein in urea solution. Horse heart cytochrome c (cyt c) has been found to undergo reversible one-electron transfer reactions at pH 2 in the presence of 9 M urea. In contrast, the protein is electrochemically inactive at pH 2 under low-ionic strength conditions in the absence of urea. Urea is shown to induce ligation changes at the heme iron and lead to practically complete loss of the alpha-helical content of the protein. Despite being unfolded, the electron-transfer (ET) kinetics of cyt c on a 2-mercaptoethanol-modified Ag(111) electrode remain unusually fast and diffusion controlled. Acid titration of ferric cyt c in 9 M urea down to pH 2 is accompanied by protonation of one of the axial ligands, water binding to the heme iron (pK(a) = 5.2), and a sudden protein collapse (pH < 4). The formal redox potential of the urea-unfolded six-coordinate His18-Fe(III)-H(2)O/five-coordinate His18-Fe(II) couple at pH 2 is estimated to be -0.083 V vs NHE, about 130 mV more positive than seen for bis-His-ligated urea-denatured cyt c at pH 7. The unusually fast ET kinetics are assigned to low reorganization energy of acid/urea-unfolded cyt c at pH 2 (0.41 +/- 0.01 eV), which is actually lower than that of the native cyt c at pH 7 (0.6 +/- 0.02 eV), but closer to that of native bis-His-ligated cyt b(5) (0.44 +/- 0.02 eV). The roles of electronic coupling and heme-flattening on the rate of heterogeneous ET reactions are discussed.  相似文献   

18.
Cytochrome c3 from Desulfovibrio vulgaris (Miyazaki F), a redox protein, contains four bis-histidine-coordinated hemes and has lower redox potential than other heme proteins. Direct electrochemical measurements of cytochrome c3 were carried out using a pyrolytic graphite edge (PGE) electrode. A low redox potential, already measured by redox titration, and a high redox potential (− 245 mV vs. Ag/AgCl) were observed at room temperature. The high redox potential of cytochrome c3 was similar to that observed for the loss of an axial ligand at heme. To investigate the loss of the histidine ligand, we explored the electrochemistry of four cytochrome c3 mutants, in which the sixth coordinated histidine was replaced by methionine. The electrochemistry of the cytochrome c3 mutants indicated that only Heme III undergoes loss of its axial histidine ligand.  相似文献   

19.
The local and global structural changes of cytochrome c induced by urea in aqueous solution have been studied using X-ray absorption spectroscopy (XAS) and small-angle X-ray scattering (SAXS). According to the XAS result, both the native (folded) protein and the unfolded protein exhibit the same preedge features taken at Fe K-edge, indicating that the Fe(III) in the heme group of the protein maintains a six-coordinated local structure in both the folded and unfolded states. Furthermore, the discernible differences in the X-ray absorption near-edge structure (XANES) of these two states are attributed to a possible spin transition of the Fe(III) from a low-spin state to a high-spin state during the unfolding process. The perseverance of six-coordination and the spin transition of the iron are reconciled by a proposed ligand exchange, with urea and water molecules replacing the methionine-80 and histidine-18 axial ligands, respectively. The SAXS result reveals a significant morphology change of cytochrome c from a globular shape of a radius of gyration R(g) = 12.8 A of the native protein to an elongated ellipsoid shape of R(g) = 29.7 A for the unfolded protein in the presence of concentrated urea. The extended X-ray absorption fine structure (EXAFS) data unveil the coordination geometries of Fe(III) in both the folded and unfolded state of cytochrome c. An initial spin transition of Fe(III) followed by an axial ligand exchange, accompanied by the change in the global envelope, is proposed for what happened in the protein unfolding process of cytochrome c.  相似文献   

20.
Unambiguous determination of metal atom oxidation state in an intact metalloprotein is achieved by matching experimental (electrospray ionization 9.4 tesla Fourier transform ion cyclotron resonance) and theoretical isotopic abundance mass distributions for one or more holoprotein charge states. The ion atom oxidation state is determined unequivocally as Fe(III) for each of four gas-phase unhydrated heme proteins electrosprayed from H2O: myoglobin, cytochrome c, cytochrome b5, and cytochrome b5 L47R (i.e., the solution-phase oxidation state is conserved following electrospray to produce gas-phase ions). However, the same Fe(III) oxidation state in all four heme proteins is observed after prior reduction by sodium dithionite to produce Fe(II) heme proteins in solution: thus proving that oxygen was present during the electrospray process. Those results bear directly on the issue of similarity (or lack thereof) of solution-phase and gas-phase protein conformations. Finally, infrared multiphoton irradiation of the gas-phase Fe(III)holoproteins releases Fe(III)heme from each of the noncovalently bound Fe(III)heme proteins (myoglobin, cytochrome b5 and cytochrome b5 L47R), but yields Fe(II)heme from the covalently bound heme in cytochrome c.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号