首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We derive the evolution law of an initial two-mode squeezed vacuum state \( \text {sech}^{2}\lambda e^{a^{\dag }b^{\dagger }\tanh \lambda }\left \vert 00\right \rangle \left \langle 00\right \vert e^{ab\tanh \lambda }\) (a pure state) passing through an a-mode diffusion channel described by the master equation
$$\frac{d\rho \left( t\right) }{dt}=-\kappa \left[ a^{\dagger}a\rho \left( t\right) -a^{\dagger}\rho \left( t\right) a-a\rho \left( t\right) a^{\dagger}+\rho \left( t\right) aa^{\dagger}\right] , $$
since the two-mode squeezed state is simultaneously an entangled state, the final state which emerges from this channel is a two-mode mixed state. Performing partial trace over the b-mode of ρ(t) yields a new chaotic field, \(\rho _{a}\left (t\right ) =\frac {\text {sech}^{2}\lambda }{1+\kappa t \text {sech}^{2}\lambda }:\exp \left [ \frac {- \text {sech}^{2}\lambda }{1+\kappa t\text {sech}^{2}\lambda }a^{\dagger }a \right ] :,\) which exhibits higher temperature and more photon numbers, showing the diffusion effect. Besides, measuring a-mode of ρ(t) to find n photons will result in the collapse of the two-mode system to a new Laguerre polynomial-weighted chaotic state in b-mode, which also exhibits entanglement.
  相似文献   

2.
Let \(z\in \mathbb {C}\), let \(\sigma ^2>0\) be a variance, and for \(N\in \mathbb {N}\) define the integrals
$$\begin{aligned} E_N^{}(z;\sigma ) := \left\{ \begin{array}{ll} {\frac{1}{\sigma }} \!\!\!\displaystyle \int _{\mathbb {R}}\! (x^2+z^2) \frac{e^{-\frac{1}{2\sigma ^2} x^2}}{\sqrt{2\pi }}dx&{}\quad \text{ if }\, N=1,\\ {\frac{1}{\sigma }} \!\!\!\displaystyle \int _{\mathbb {R}^N}\! \prod \prod \limits _{1\le k<l\le N}\!\! e^{-\frac{1}{2N}(1-\sigma ^{-2}) (x_k-x_l)^2} \prod _{1\le n\le N}\!\!\!\!(x_n^2+z^2) \frac{e^{-\frac{1}{2\sigma ^2} x_n^2}}{\sqrt{2\pi }}dx_n &{}\quad \text{ if }\, N>1. \end{array}\right. \!\!\! \end{aligned}$$
These are expected values of the polynomials \(P_N^{}(z)=\prod _{1\le n\le N}(X_n^2+z^2)\) whose 2N zeros \(\{\pm i X_k\}^{}_{k=1,\ldots ,N}\) are generated by N identically distributed multi-variate mean-zero normal random variables \(\{X_k\}^{N}_{k=1}\) with co-variance \(\mathrm{{Cov}}_N^{}(X_k,X_l)=(1+\frac{\sigma ^2-1}{N})\delta _{k,l}+\frac{\sigma ^2-1}{N}(1-\delta _{k,l})\). The \(E_N^{}(z;\sigma )\) are polynomials in \(z^2\), explicitly computable for arbitrary N, yet a list of the first three \(E_N^{}(z;\sigma )\) shows that the expressions become unwieldy already for moderate N—unless \(\sigma = 1\), in which case \(E_N^{}(z;1) = (1+z^2)^N\) for all \(z\in \mathbb {C}\) and \(N\in \mathbb {N}\). (Incidentally, commonly available computer algebra evaluates the integrals \(E_N^{}(z;\sigma )\) only for N up to a dozen, due to memory constraints). Asymptotic evaluations are needed for the large-N regime. For general complex z these have traditionally been limited to analytic expansion techniques; several rigorous results are proved for complex z near 0. Yet if \(z\in \mathbb {R}\) one can also compute this “infinite-degree” limit with the help of the familiar relative entropy principle for probability measures; a rigorous proof of this fact is supplied. Computer algebra-generated evidence is presented in support of a conjecture that a generalization of the relative entropy principle to signed or complex measures governs the \(N\rightarrow \infty \) asymptotics of the regime \(iz\in \mathbb {R}\). Potential generalizations, in particular to point vortex ensembles and the prescribed Gauss curvature problem, and to random matrix ensembles, are emphasized.
  相似文献   

3.
The Smirnov method of analytic continuation (B.M. Smirnov, Sov. Phys. JETP 20, 345 (1964)) has been justified and developed for atomic physics. It has been shown that the polarizability of alkali atoms α, their van der Waals interaction constant C 6, and the oscillator strength of the transition to the first P state f 01 are related to the parameter 〈r 2〉 and gap in the spectrum \(\frac{3}{2}\frac{f}{\Delta } \approx \frac{3}{2}\alpha \Delta \approx {\left( {3{C_6}\Delta } \right)^{{\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 2}}\right.\kern-\nulldelimiterspace}\!\lower0.7ex\hbox{$2$}}}} \approx \left\langle {{r^2}} \right\rangle \). The average square of the coordinate of the valence electron 〈r 2〉 in the first approximation has a hydrogen dependence \({J_1} = \frac{1}{{2{v^2}}}.\) on the filling factor ν, which is defined in terms of the first ionization potential: xxxxxxxxx  相似文献   

4.
The band spectrum of SbO was excited in a heavy current discharge from a 2000 volt D. C. generator. A new doublet system of bands occurring in the region λ 2800 toλ 3600 arising from a transition of the type2Δr?2 Π r was identified. The lower2 Π r state is found to be common to those of the three band systems reported earlier, which is in all probability the ground state of the SbO molecule. The band heads of the high frequency and low frequency components could be represented by the following quantum formulae:
$$\begin{gathered} ^2 \Delta _{\tfrac{3}{2}} - ^2 \Pi _{\tfrac{1}{2}} : \hfill \\ v = 29754 \cdot 6 + 570 \cdot 6 (v' + \tfrac{1}{2}) - 3 \cdot 52 (v' + \tfrac{1}{2})^2 - 820 \cdot 5 (v'' + \tfrac{1}{2}) + 4 \cdot 62 (v'' + \tfrac{1}{2})^2 \hfill \\ ^2 \Delta _{\tfrac{5}{2}} - ^2 \Pi _{\tfrac{3}{2}} : \hfill \\ v = 28044 \cdot 8 + 568 \cdot 1 (v' + \tfrac{1}{2}) - 3 \cdot 28 (v' + \tfrac{1}{2})^2 - 819 \cdot 2 (v'' + \tfrac{1}{2}) + 4 \cdot 62 (v'' + \tfrac{1}{2})^2 . \hfill \\ \end{gathered} $$  相似文献   

5.
The polarizationP of the beta-rays from Ho166 and P32 has been investigated using the method of combined multiple- and Mott-scattering. The result for\(P/\frac{v}{c}\) averaged over the energy range accepted by our apparatus\(\left( {\frac{v}{c} \approx 0.8} \right)\) is
$$\left\langle {\left( { - P/\frac{v}{c}} \right)_{Ho^{1^{66} } } } \right\rangle _{Av} = (0.99 \pm 0.02)\left\langle {\left( { - P/\frac{v}{c}} \right)_{P^{3_2 } } } \right\rangle _{Av} .$$  相似文献   

6.
We study the final problem for the nonlinear Schrödinger equation
$i{\partial }_{t}u+\frac{1}{2}\Delta u=\lambda|u|^{\frac{2}{n}}u,\quad (t,x)\in {\mathbf{R}}\times \mathbf{R}^{n},$
where\(\lambda \in{\bf R},n=1,2,3\). If the final data\(u_{+}\in {\bf H}^{0,\alpha }=\left\{ \phi \in {\bf L}^{2}:\left( 1+\left\vert x\right\vert \right) ^{\alpha }\phi \in {\bf L}^{2}\right\} \) with\(\frac{ n}{2} < \alpha < \min \left( n,2,1+\frac{2}{n}\right) \) and the norm\(\Vert \widehat{u_{+}}\Vert _{{\bf L}^{\infty }}\) is sufficiently small, then we prove the existence of the wave operator in L 2. We also construct the modified scattering operator from H 0,α to H 0,δ with\(\frac{n}{2} < \delta < \alpha\).
  相似文献   

7.
We consider the quantum mechanics on the noncommutative plane with the generalized uncertainty relations \({\Delta } x_{1} {\Delta } x_{2} \ge \frac {\theta }{2}, {\Delta } p_{1} {\Delta } p_{2} \ge \frac {\bar {\theta }}{2}, {\Delta } x_{i} {\Delta } p_{i} \ge \frac {\hbar }{2}, {\Delta } x_{1} {\Delta } p_{2} \ge \frac {\eta }{2}\). We show that the model has two essentially different phases which is determined by \(\kappa = 1 + \frac {1}{\hbar ^{2} } (\eta ^{2} - \theta \bar {\theta })\). We construct a operator \(\hat {\pi }_{i}\) commuting with \(\hat {x}_{j} \) and discuss the harmonic oscillator model in two dimensional non-commutative space for three case κ > 0, κ = 0, κ < 0. Finally, we discuss the thermodynamics of a particle whose hamiltonian is related to the harmonic oscillator model in two dimensional non-commutative space.  相似文献   

8.
The halflife of the first excited state in Yb170 has been measured by delayed beta-electron coincidence technique. The value of\(T_{\tfrac{1}{2}} = (1 \cdot 61 \pm 0 \cdot 06)10^{ - 9} \) sec was obtained. The transition probability was calculated and compared with the estimated value from the single particle model. An enhancement factor of 169 was found. The intrinsic quadrupole momentQ 0 and the deformation parameterβ were determined.  相似文献   

9.
The branching ratios and differential distributions for the four-leptonic decays \({B^ - } \to {\mu ^ + }{\mu ^ - }{\bar v_e}{e^ - }\), \({B^ - } \to {e^ + }{e^ - }{\bar v_\mu }{\mu ^ - }\), and \({B^ - } \to {\mu ^ + }{\bar v_\mu }{\mu ^ - }{\mu ^ - }\) are calculated within the Standard Model. The branching ratios for the rare decays Bd,se+e?μ+μ? and Bd,sμ+μ?μ+μ? are estimated. Methods for testing the lepton universality in rare multileptonic decays of charged and neutral B mesons are proposed.  相似文献   

10.
We find new operator formulas for converting Q?P and P?Q ordering to Weyl ordering, where Q and P are the coordinate and momentum operator. In this way we reveal the essence of operators’ Weyl ordering scheme, e.g., Weyl ordered operator polynomial ${_{:}^{:}}\;Q^{m}P^{n}\;{_{:}^{:}}$ , $$\begin{aligned} {_{:}^{:}}\;Q^{m}P^{n}\;{_{:}^{:}} =&\sum_{l=0}^{\min (m,n)} \biggl( \frac{-i\hbar }{2} \biggr) ^{l}l!\binom{m}{l}\binom{n}{l}Q^{m-l}P^{n-l} \\ =& \biggl( \frac{\hbar }{2} \biggr) ^{ ( m+n ) /2}i^{n}H_{m,n} \biggl( \frac{\sqrt{2}Q}{\sqrt{\hbar }},\frac{-i\sqrt{2}P}{\sqrt{\hbar }} \biggr) \bigg|_{Q_{\mathrm{before}}P} \end{aligned}$$ where ${}_{:}^{:}$ ${}_{:}^{:}$ denotes the Weyl ordering symbol, and H m,n is the two-variable Hermite polynomial. This helps us to know the Weyl ordering more intuitively.  相似文献   

11.
The decay of an excited state by the emission of twoγ-quanta (γ γ-transitions) or two conversion electrons (e e-transitions) or oneγ-quantum and one conversion electron (γ e-transitions) is expected as a second order radiation process. The decay of Ag109m was examined for such events using a special arrangement of two NaJ-scintillation counters in coincidence. The energies of coincident quanta were displayed on the two axes of an “X-Y”-Oscilloscope respectively. For the ratio ofγ γ-transitions to one-quantum transitions an upper limit of\(\frac{{W_{\gamma \gamma } }}{{W_\gamma }} \leqq 1,9 \cdot 10^{ - 5} \) was obtained. Furthermore theγ-spectrum in coincidence withK X-rays was studied. From these measurementse e- andγ e-transition rates can be calculated for the case ofK shell conversion. The results obtained are:
$$\frac{{W_{^e K^e K} }}{{W_\gamma }} = \left( {8,1_{ - 1,7}^{ + 0,6} } \right) \cdot 10^{ - 3} and\frac{{W_{\gamma ^e K} }}{{W_\gamma }}< 1,5 \cdot 10^{ - 3} .$$  相似文献   

12.
I. I. Guseinov 《Few-Body Systems》2013,54(11):1773-1780
By the use of complete orthonormal sets of ${\psi ^{(\alpha^{\ast})}}$ -exponential type orbitals ( ${\psi ^{(\alpha^{\ast})}}$ -ETOs) with integer (for α * = α) and noninteger self-frictional quantum number α *(for α * ≠ α) in standard convention introduced by the author, the one-range addition theorems for ${\chi }$ -noninteger n Slater type orbitals ${(\chi}$ -NISTOs) are established. These orbitals are defined as follows $$\begin{array}{ll}\psi _{nlm}^{(\alpha^*)} (\zeta ,\vec {r}) = \frac{(2\zeta )^{3/2}}{\Gamma (p_l ^* + 1)} \left[{\frac{\Gamma (q_l ^* + )}{(2n)^{\alpha ^*}(n - l - 1)!}} \right]^{1/2}e^{-\frac{x}{2}}x^{l}_1 F_1 ({-[ {n - l - 1}]; p_l ^* + 1; x})S_{lm} (\theta ,\varphi )\\ \chi _{n^*lm} (\zeta ,\vec {r}) = (2\zeta )^{3/2}\left[ {\Gamma(2n^* + 1)}\right]^{{-1}/2}x^{n^*-1}e^{-\frac{x}{2}}S_{lm}(\theta ,\varphi ),\end{array}$$ where ${x=2\zeta r, 0<\zeta <\infty , p_l ^{\ast}=2l+2-\alpha ^{\ast}, q_l ^{\ast}=n+l+1-\alpha ^{\ast}, -\infty <\alpha ^{\ast} <3 , -\infty <\alpha \leq 2,_1 F_1 }$ is the confluent hypergeometric function and ${S_{lm} (\theta ,\varphi )}$ are the complex or real spherical harmonics. The origin of the ${\psi ^{(\alpha ^{\ast})} }$ -ETOs, therefore, of the one-range addition theorems obtained in this work for ${\chi}$ -NISTOs is the self-frictional potential of the field produced by the particle itself. The obtained formulas can be useful especially in the electronic structure calculations of atoms, molecules and solids when Hartree–Fock–Roothan approximation is employed.  相似文献   

13.
We show in details how to determine and identify the algebra g = {Ai} of the infinitesimal symmetry operators of the following pseudo-diffusion equation (PSDE) LQ\(\left[ {\frac{\partial }{{\partial t}} - \frac{1}{4}\left( {\frac{{{\partial ^2}}}{{\partial {x^2}}} - \frac{1}{{{t^2}}}\frac{{{\partial ^2}}}{{\partial {p^2}}}} \right)} \right]\) Q(x, p, t) = 0. This equation describes the behavior of the Q functions in the (x, p) phase space as a function of a squeeze parameter y, where t = e 2y. We illustrate how G i(λ) ≡ exp[λA i] can be used to obtain interesting solutions. We show that one of the symmetry generators, A 4, acts in the (x, p) plane like the Lorentz boost in (x, t) plane. We construct the Anti-de-Sitter algebra so(3, 2) from quadratic products of 4 of the A i, which makes it the invariance algebra of the PSDE. We also discuss the unusual contraction of so(3, 1) to so(1, 1)? h2. We show that the spherical Bessel functions I 0(z) and K 0(z) yield solutions of the PSDE, where z is scaling and “twist” invariant.  相似文献   

14.
The contribution to the sixth-order muon anomaly from second-order electron vacuum polarization is determined analytically to orderm e/m μ. The result, including the contributions from graphs containing proper and improper fourth-order electron vacuum polarization subgraphs, is $$\begin{gathered} \left( {\frac{\alpha }{\pi }} \right)^3 \left\{ {\frac{2}{9}\log ^2 } \right.\frac{{m_\mu }}{{m_e }} + \left[ {\frac{{31}}{{27}}} \right. + \frac{{\pi ^2 }}{9} - \frac{2}{3}\pi ^2 \log 2 \hfill \\ \left. { + \zeta \left( 3 \right)} \right]\log \frac{{m_\mu }}{{m_e }} + \left[ {\frac{{1075}}{{216}}} \right. - \frac{{25}}{{18}}\pi ^2 + \frac{{5\pi ^2 }}{3}\log 2 \hfill \\ \left. { - 3\zeta \left( 3 \right) + \frac{{11}}{{216}}\pi ^4 - \frac{2}{9}\pi ^2 \log ^2 2 - \frac{1}{9}log^4 2 - \frac{8}{3}a_4 } \right] \hfill \\ + \left[ {\frac{{3199}}{{1080}}\pi ^2 - \frac{{16}}{9}\pi ^2 \log 2 - \frac{{13}}{8}\pi ^3 } \right]\left. {\frac{{m_e }}{{m_\mu }}} \right\} \hfill \\ \end{gathered} $$ . To obtain the total sixth-order contribution toa μ?a e, one must add the light-by-light contribution to the above expression.  相似文献   

15.
The optical gain of He-Ne discharges for the laser wave-length of 6328 AE is investigated experimentally. The measurements are performed in two independent methods, which both give the same results. The gain of the He-Ne discharge is measured for a number of discharge tubes with different tube-lengthsl and tube-diametersD. The experiments show that the maximum gain? 0 is a function of tube-length and-diameter:?G 0(l,D) ?
$$\hat G_0 (l,D) \cong \left[ {1 + 0,5\left( {\frac{{D_0 }}{D}} \right)^{1,4} } \right]^{{l \mathord{\left/ {\vphantom {l {l_0 }}} \right. \kern-\nulldelimiterspace} {l_0 }}} $$  相似文献   

16.
An electric Molecular-Beam-Resonance-Spectrometer has been used to measure simultanously the Zeeman- and Stark-effect splitting of the hyperfine structure of39K19 F. Electric four pole lenses served as focusing and refocusing fields of the spectrometer. A homogenous magnetic field (Zeeman field) was superimposed to the electric field (Stark field) in the transition region of the apparatus. The observed (Δm J =±1)-transitions were induced electrically. Completely resolved spectra of KF in theJ=1 rotational state have been measured. The obtained quantities are: The electric dipolmomentμ e l of the molecul forv=0,1 and 2; the rotational magnetic dipolmomentμ J forv=0,1; the difference of the magnetic shielding (σ ? σ) by the electrons of both nuclei as well as the difference of the molecular susceptibility (ξ ? ξ). The numerical values are
$$\begin{array}{*{20}c} {\mu _{e1} = 8,585(4)deb,} \\ {\frac{{(\mu _{e1} )_{\upsilon = 1} }}{{(\mu _{e1} )_{\upsilon = 0} }} = 1,0080,} \\ {{{\mu _J } \mathord{\left/ {\vphantom {{\mu _J } J}} \right. \kern-\nulldelimiterspace} J} = ( - )2352(10) \cdot 10^{ - 6} \mu _B ,} \\ {(\sigma _ \bot - \sigma _\parallel )F = ( - )2,19(9) \cdot 10^{ - 4} ,} \\ {(\sigma _ \bot - \sigma _\parallel )K = ( - )12(9) \cdot 10^{ - 4} ,} \\ {(\xi _ \bot - \xi _\parallel ) = 3 (1) \cdot 10^{ - 30} {{erg} \mathord{\left/ {\vphantom {{erg} {Gau\beta ^2 }}} \right. \kern-\nulldelimiterspace} {Gau\beta ^2 }}} \\ \end{array} $$  相似文献   

17.
A few red degraded bands attributable to NS have been reported earlier byFowler andBarker, Dressler andBarrow et al, and they occur in the same region (2300 to 2700 Å) as the bands of the known systems (C 2 +?X 2 П) and (A 2 Δ?X 2 П). Measurements made on the heads of some of these weak bands ledBarrow et al. to believe that these bands may form a system analogous to theβ-system of NO and be due to a2 П-2 П transition. The spectrum of NS has now been studied in a little more detail by means of an uncondensed discharge through dry nitrogen and sulphur vapour in the presence of argon and thirty three bands belonging to this system have been recorded in the region 2280 to 2760 Å. It has been found possible to represent the band heads by means of the equation
$$^v {\text{head}} {\text{ = }} \left. {_{43182 \cdot 5}^{{\text{43311}} \cdot {\text{5}}} } \right\}_{ - [1219 \cdot 20(v'' + \tfrac{1}{2}) - 7 \cdot 48(v'' + \tfrac{1}{2})^2 ].}^{ + [761 \cdot 04(v' + \tfrac{1}{2}) - 5 \cdot 10(v' + \tfrac{1}{2})^2 ]}$$  相似文献   

18.
In order to quantify contextuality of empirical models, the quantity of contextuality (QoC) of empirical models is introduced in terms of the trace-distance. Let Q C(e) denote the QoC of an empirical model e. The following conclusions are proved. (i) An empirical model e is non-contextual if and only if Q C(e)=0, and then it is contextual if and only if Q C(e)>0; (ii) the QoC function QC is convex, contractive and continuous. Finally, the QoC of some famous models is computed, including PM-isotropic boxes P M α , M-isotropic boxes M α , C H n -isotropic boxes \(CH_{n}^{\alpha }\) as well as K box, where α∈[0,1]. Moreover, P M α is non-contextual if and only if \(\alpha \in [\frac {1}{6},\frac {5}{6}]\); M α is non-contextual if and only if \(\alpha \in [0,\frac {4}{5}]\); when n is even, \(CH_{n}^{\alpha }\) is non-contextual if and only if \(\alpha \in [\frac {1}{n},\frac {n-1}{n}]\), and when n is odd, \(CH_{n}^{\alpha }\) is non-contextual if and only if \(\alpha \in [0,\frac {n-1}{n}]\). The most important thing is that it is very easy to compare the QoC of any two isotropic boxes discussed in the above.  相似文献   

19.
The Neumann Schrödinger operator \(\mathcal{L}\) is considered on a thin 2D star-shaped junction, composed of a vertex domain Ωint and a few semi-infinite straight leads ω m , m = 1, 2, ..., M, of width δ, δ ? diam Ωint, attached to Ωint at Γ ? ?Ωint. The potential of the Schrödinger operator l ω on the leads vanishes, hence there are only a finite number of eigenvalues of the Neumann Schrödinger operator L int on Ωint embedded into the open spectral branches of l ω with oscillating solutions χ ±(x, p) = \(e^{ \pm iK_ + x} e_m \) of l ω χ ± = p 2 χ ±. The exponent of the open channels in the wires is
$K_ + (\lambda ) = p\sum\limits_{m = 1}^M {e^m } \rangle \langle e^m = \sqrt \lambda P_ + $
, with constant e m , on a relatively small essential spectral interval Δ ? [0, π 2 δ ?2). The scattering matrix of the junction is represented on Δ in terms of the ND mapping
$\mathcal{N} = \frac{{\partial P_ + \Psi }}{{\partial x}}(0,\lambda )\left| {_\Gamma \to P_ + \Psi _ + (0,\lambda )} \right|_\Gamma $
as
$S(\lambda ) = (ip\mathcal{N} + I_ + )^{ - 1} (ip\mathcal{N} - I_ + ), I_ + = \sum\limits_{m = 1}^M {e^m } \rangle \langle e^m = P_ + $
. We derive an approximate formula for \(\mathcal{N}\) in terms of the Neumann-to-Dirichlet mapping \(\mathcal{N}_{\operatorname{int} } \) of L int and the exponent K ? of the closed channels of l ω . If there is only one simple eigenvalue λ 0 ∈ Δ, L intφ0 = λ 0φ0 then, for a thin junction, \(\mathcal{N} \approx |\vec \phi _0 |^2 P_0 (\lambda _0 - \lambda )^{ - 1} \) with
$\vec \phi _0 = P_ + \phi _0 = (\delta ^{ - 1} \int_{\Gamma _1 } {\phi _0 (\gamma )} d\gamma ,\delta ^{ - 1} \int_{\Gamma _2 } {\phi _0 (\gamma )} d\gamma , \ldots \delta ^{ - 1} \int_{\Gamma _M } {\phi _0 (\gamma )} d\gamma )$
and \(P_0 = \vec \phi _0 \rangle |\vec \phi _0 |^{ - 2} \langle \vec \phi _0 \),
$S(\lambda ) \approx \frac{{ip|\vec \phi _0 |^2 P_0 (\lambda _0 - \lambda )^{ - 1} - I_ + }}{{ip|\vec \phi _0 |^2 P_0 (\lambda _0 - \lambda )^{ - 1} + I_ + }} = :S_{appr} (\lambda )$
. The related boundary condition for the components P +Ψ(0) and P +Ψ′(0) of the scattering Ansatz in the open channel \(P_ + \Psi (0) = (\bar \Psi _1 ,\bar \Psi _2 , \ldots ,\bar \Psi _M ), P_ + \Psi '(0) = (\bar \Psi '_1 , \bar \Psi '_2 , \ldots , \bar \Psi '_M )\) includes the weighted continuity (1) of the scattering Ansatz Ψ at the vertex and the weighted balance of the currents (2), where
$\frac{{\bar \Psi _m }}{{\bar \phi _0^m }} = \frac{{\delta \sum\nolimits_{t = 1}^M { \bar \Psi _t \bar \phi _0^t } }}{{|\vec \phi _0 |^2 }} = \frac{{\bar \Psi _r }}{{\bar \phi _0^r }} = :\bar \Psi (0)/\bar \phi (0), 1 \leqslant m,r \leqslant M$
(1)
,
$\sum\limits_{m = 1}^M {\bar \Psi '_m } \bar \phi _0^m + \delta ^{ - 1} (\lambda - \lambda _0 )\bar \Psi /\bar \phi (0) = 0$
(1)
. Conditions (1) and (2) constitute the generalized Kirchhoff boundary condition at the vertex for the Schrödinger operator on a thin junction and remain valid for the corresponding 1D model. We compare this with the previous result by Kuchment and Zeng obtained by the variational technique for the Neumann Laplacian on a shrinking quantum network.
  相似文献   

20.
The concentration of lithium ions in the cathode of lithium ion cells has been obtained by solving the materials balance equation $$\frac{{\partial c}}{{\partial t}} = \varepsilon ^{1/2} D\frac{{\partial ^2 c}}{{\partial x^2 }} + \frac{{aj_n (1--t_ + )}}{\varepsilon }$$ by Laplace transform. On the assumption that the cell is fully discharged when there are zero lithium ions at the current collector of the cathode, the discharge timet d is obtained as $$\tau = \frac{{r^2 }}{{\pi ^2 \varepsilon ^{1/2} }}\ln \left[ {\frac{{\pi ^2 }}{{r^2 }}\left( {\frac{{\varepsilon ^{1/2} }}{J} + \frac{{r^2 }}{6}} \right)} \right]$$ which, when substituted into the equationC=It d /M, whereI is the discharge current andM is the mass of the separator and positive electrode, an analytical expression for the specific capacity of the lithium cell is given as $$C = \frac{{IL_c ^2 }}{{\pi {\rm M}D\varepsilon ^{1/2} }}\ln \left[ {\frac{{\pi ^2 }}{2}\left( {\frac{{FDc_0 \varepsilon ^{3/2} }}{{I(1 - t_ + )L_c }} + \frac{1}{6}} \right)} \right]$$   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号