首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The synthesis of a fluorinated macroinitiator for copper-catalyzed atom transfer radical polymerization (ATRP) is reported, as well as its use for the controlled living polymerization of poly(propylene glycol) methacrylate (PPGM) in MEK at 80 °C. The ATRP system used was efficient for polymerization of the functionalized monomer and the molecular weight of the polymer estimated by NMR spectroscopy was in close agreement with the theoretical molecular weight, as expected for controlled processes. The statistical copolymerization of PPGM or methyl ether poly(ethylene glycol) methacrylate (MPEGMA) with a perfluoroalkyl ethyl methacrylate by copper-mediated ATRP was also investigated and led to copolymers with essentially random incorporation of monomers. The syntheses and characterization of star-like homopolymers of MPEGMA or the fluorinated monomer via ATRP are also reported, as well as an amphiphilic star-like block copolymer containing ethyleneglycol units as the core and fluorinated moieties in the shell. The micellar behavior of this copolymer was investigated as a function of the external environment.  相似文献   

2.
An amphiphilic poly(2‐oxazoline) block copolymer consisting of a water‐soluble poly(2‐methyloxazoline) block and a hydrophobic block bearing bipyridine moieties in the side chain was synthesized by living cationic polymerization. This macroligand was applied to atom‐transfer radical polymerization (ATRP) of methyl methacrylate in aqueous solution in the presence of Cu(I)Br and ethyl 2‐bromoisobutyrate as the initiator. High monomer conversion up to 96% was achieved after 3 h of polymerization at 60°C.  相似文献   

3.
利用原子转移自由基聚合(ATRP)和前体聚合物重氮偶合反应相结合的方法,制备了一种新型含强推拉电子型偶氮苯的嵌段共聚物PEG-b-P6CNAzo.首先使用大分子引发剂PEGBr引发单体甲基丙烯酸6(N-甲基苯胺基)己酯进行ATRP聚合,得到作为前体聚合物的两嵌段共聚物PEG-b-P6MA,然后再与4-氰基苯胺的重氮盐进行重氮偶合反应得到目标产物PEG-b-P6CNAzo.利用GPC1、H-NMR、UV-Vis等手段对制得的聚合物进行了详细的表征.1H-NMR分析结果表明PEG-b-P6MA的聚合度为122-b-13,重氮偶合反应转化率接近100%.GPC结果表明PEG-b-P6MA与PEG-b-P6CNAzo均具有较窄的分子量分布.向浓度为0.2 g/L的PEG-b-P6CNAzo四氢呋喃溶液中以0.5 mL/h速率加水,该嵌段共聚物可以形成直径约11 nm的棒状胶束.  相似文献   

4.
The rapid atom transfer radical polymerization (ATRP) of benzyl methacrylate (BnMA) at ambient temperature was used to synthesize block copolymers with styrene as the second monomer. Various block copolymers such as AB diblock, BAB symmetric and asymmetric triblock, and ABABA pentablock copolymers were synthesized in which the polymerization of one of the blocks namely BnMA was performed at ambient temperature. It is demonstrated that the block copolymerization can be performed in a controlled manner, regardless of the sequence of monomer addition via halogen exchange technique. Using this reaction condition, the composition (ratio) of one block (here BnMA) can be varied from 1 to 100. It is further demonstrated that in the multiblock copolymer syntheses involving styrene and benzyl methacrylate, it is better to start from the PS macroinitiator compared with PBnMA macroinitiator. The polymers synthesized are relatively narrow dispersed (<1.5). It is identified that the ATRP of BnMA is limited to certain molecular weights of the PS macroinitiator. Additionally, a preliminary report about the synthesis of the block copolymer of BnMA‐methyl methacrylate (MMA), both at ambient temperature, is demonstrated. Subsequent deprotection of the benzyl group using Pd/C? H2 results in methacrylic acid (MAA)–methyl methacrylate (MAA–MMA) amphiphilic block copolymer. GPC, IR, and NMR are used to characterize the synthesized polymers. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2848–2861, 2006  相似文献   

5.
利用原子转移自由基聚合(ATRP)合成了一种新型的含假芪型偶氮生色团的两亲性嵌段共聚物P(HEMA-b-6CNAzo)。首先,采用ATRP引发剂引发三甲基硅保护的羟乙基甲基丙烯酸酯(HEMA—TMS)聚合,得到大分子引发剂P(HEMA—TMS);接着进一步引发单体甲基丙烯酸6-(N_甲基苯胺基)己酯进行ATRP反应,得...  相似文献   

6.
The synthetic parameters for the chemoenzymatic cascade synthesis of block copolymers combining enzymatic ring‐opening polymerization (EROP) and atom transfer radical polymerization (ATRP) in one pot were investigated. A detailed analysis of the mutual interactions between the single reaction components revealed that the ATRP catalyst system could have a significant inhibiting effect on the enzyme activity. The inhibition of the enzyme was less pronounced in the presence of multivalent ligands such as dinonyl bipyridine, which thus could be used in this reaction as an ATRP catalyst. Moreover, the choice of the ATRP monomer was investigated. Methyl methacrylate interfered with EROP by transesterification, whereas t‐butyl methacrylate was inert. Block copolymers were successfully synthesized with this cascade approach by the activation of ATRP after EROP by the addition of the ATRP catalyst and, with lower block copolymer yields, by the mixing of all the components before the copolymerization. Adetailed kinetic analysis of the reactions and the structure of the block copolymers showed that the first procedure proceeded smoothly to high block copolymer yields, whereas in the latter a noteworthy amount of the poly(t‐butyl methacrylate) homopolymer was detected. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4290–4297, 2006  相似文献   

7.
以2-溴异丁酸乙酯为引发剂, 氯化亚铜/联二吡啶为催化剂, 通过原子转移自由基聚合(ATRP)获得分子链末端含一个α-溴原子的聚甲基丙烯酸甲酯(PMMA-Br), 以此为大分子引发剂引发甲基丙烯酸铅[Pb(MA)2]单体进行ATRP反应, 制得P[MMA-b-Pb(MA)2]嵌段共聚物, 将此共聚物在盐酸中进行离子交换即得聚甲基丙烯酸甲酯-聚甲基丙烯酸的两亲性嵌段共聚物[P(MMA-b-MAA)]. 用FTIR, GPC, NMR和SEM方法对共聚物进行了表征.  相似文献   

8.
The radical copolymerization of methyl methacrylate and 2-hydroxyethyl methacrylate was carried out via atomtransfer radical polymerization (ATRP) initiated by ethyl 2-bromoisobutyrate and catalyzed by CuBr/2,2'-bipyridinecomplex. This polymerization proceeds in a living fashion with controlled molecular weight and low polydispersity. Theobtained copolymer was esterified with 2-bromoisobutylryl bromide yielding a macroinitiator, poly(methyl methacrylate-co-2-hydroxyethyl methacrylate-co-2-(2-bromoisobutyryloxy)ethyl methacrylate), and its structure was characterized by ~1H-NMR. This macroinitiator was used for ATRP of styrene to synthesize poly(methyl methacrylate)-graft-polystyrene. Themolecular weight of graft copolymer increased with the monomer conversion, and the polydispersity remained relatively low.The individual grafted polystyrene chains were cleaved from the macroinitiator backbone by hydrolysis and the hydrolyzed product was characterized by ~1H-NMR and GPC.  相似文献   

9.
ABA block copolymers of methyl methacrylate and methylphenylsilane were synthesized with a methodology based on atom transfer radical polymerization (ATRP). The reaction of samples of α,ω‐dihalopoly(methylphenylsilane) with 2‐hydroxyethyl‐2‐methyl‐2‐bromoproprionate gave suitable macroinitiators for the ATRP of methyl methacrylate. The latter procedure was carried out at 95 °C in a xylene solution with CuBr and 2,2‐bipyridine as the initiating system. The rate of the polymerization was first‐order with respect to monomer conversion. The block copolymers were characterized with 1H NMR and 13C NMR spectroscopy and size exclusion chromatography, and differential scanning calorimetry was used to obtain preliminary evidence of phase separation in the copolymer products. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 30–40, 2003  相似文献   

10.
The functionalization of monomer units in the form of macroinitiators in an orthogonal fashion yields more predictable macromolecular architectures and complex polymers. Therefore, a new ‐shaped amphiphilic block copolymer, (PMMA)2–PEO–(PS)2–PEO–(PMMA)2 [where PMMA is poly(methyl methacrylate), PEO is poly (ethylene oxide), and PS is polystyrene], has been designed and successfully synthesized by the combination of atom transfer radical polymerization (ATRP) and living anionic polymerization. The synthesis of meso‐2,3‐dibromosuccinic acid acetate/diethylene glycol was used to initiate the polymerization of styrene via ATRP to yield linear (HO)2–PS2 with two active hydroxyl groups by living anionic polymerization via diphenylmethylpotassium to initiate the polymerization of ethylene oxide. Afterwards, the synthesized miktoarm‐4 amphiphilic block copolymer, (HO–PEO)2–PS2, was esterified with 2,2‐dichloroacetyl chloride to form a macroinitiator that initiated the polymerization of methyl methacrylate via ATRP to prepare the ‐shaped amphiphilic block copolymer. The polymers were characterized with gel permeation chromatography and 1H NMR spectroscopy. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 147–156, 2007  相似文献   

11.
Well-defined polymer brushes and block copolymer brushes consisting of 2-methacryloyloxyethyl phosphorylcholine (MPC) and glycidyl methacrylate (GMA) were prepared by surface-initiated atom transfer radical polymerization (ATRP). The polymer brushes were used for the immobilization of antibody fragments in a defined orientation. Pyridyl disulfide moieties were introduced to the polymer brushes via a reaction of epoxy groups in GMA units. Fab’ fragments were then immobilized onto these surfaces via a thiol-disulfide interchange reaction and the reactivity of antibodies with antigens was investigated. Antigen/antibody binding on the polymer brushes was more preferable than that on epoxysilane films as a control surface. Furthermore, the activity of the antibodies immobilized on the block copolymer brushes having biocompatible PMPC was greater than that on other surfaces that did not have PMPC in their structures.  相似文献   

12.
Three controlled/living polymerization processes, namely atom transfer radical polymerization (ATRP), ring‐opening polymerization (ROP) and iniferter polymerization, and photoinduced radical coupling reaction were combined for the preparation of ABCBD‐type H‐shaped complex copolymer. First, α‐benzophenone functional polystyrene (BP‐PS) and poly(methyl methacrylate) (BP‐PMMA) were prepared independently by ATRP. The resulting polymers were irradiated to form ketyl radicals by hydrogen abstraction of the excited benzophenone moieties present at each chain end. Coupling of these radicals resulted in the formation of polystyrene‐b‐poly(methyl methacrylate) (PS‐b‐PMMA) with benzpinacole structure at the junction point possessing both hydroxyl and iniferter functionalities. ROP of ε‐caprolactone (CL) by using PS‐b‐PMMA as bifunctional initiator, in the presence of stannous octoate yielded the corresponding tetrablock copolymer, PCL‐PS‐PMMA‐PCL. Finally, the polymerization of tert‐butyl acrylate (tBA) via iniferter process gave the targeted H‐shaped block copolymer. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4601–4607  相似文献   

13.
A new facile method for preparation of an amphiphilic block copolymer via a one‐pot sequential atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) and 2‐hydroxyethyl methacrylate (HEMA) on solid support was developed. As a model homopolymerization for the solid‐supported block copolymerization, ATRPs of MMA and HEMA in toluene and in 2‐butanone/1‐propanol solvent system were carried out, respectively. Crosslinked polystyrene beads bearing 2‐bromoisobutyrate moieties successfully initiated the polymerizations of MMA and HEMA in controlled manner. On the basis of the successful results, the one‐pot synthesis of amphiphilic block copolymer by changing the reaction medium was performed. After the ATRP of MMA in toluene at 90 °C for 1 h, the poly(MMA) formed on the beads were washed by continuous flow of 2‐butanone/1‐propanol under nitrogen with the aid of a glass filter in a U‐shaped glass vessel. Then, 2‐butanone/1‐propanol, copper chloride (I), 2,2′‐bipyridyl, and HEMA were added and heated at 50 °C for 48 h with shaking the vessel, followed by treatment with trifluoroacetic acid to isolate the well‐defined amphiphilic block copolymer, poly(MMA‐b‐HEMA). These demonstrated the feasibility of the present strategy for well‐defined synthesis of amphiphilic block copolymers via a one‐pot procedure. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1990–1997, 2008  相似文献   

14.
Most research on copolymers with fluorinated monomers has focused on the relationship between fluorinated monomer content and the corresponding surface structure. However, the influence of the non-fluorinated block on the surface structure of the copolymer film is unknown. Various molecular weight poly(butyl methacrylates) (PBMA) end-capped with 2-perfluorooctylethyl methacrylate (FMA) units (PBMA-ec-FMA) have been synthesized by atom transfer radical polymerization (ATRP). The effect of the PBMA block length on the surface structure and properties of the polymers both in the solid state and in solution was investigated using various techniques. X-ray photoelectron spectroscopy (XPS), sum frequency generation (SFG) vibrational spectroscopy and X-ray diffraction (XRD) analyses indicated that longer PBMA blocks enhanced both the enrichment of the fluorinated moieties and the order of the packing orientation of the perfluoroalkyl side chains on the surface. This enhancement was attributed mainly to the molecular aggregate structure of the end-capped polymers with long PBMA blocks in the solution and to the interfacial structure at the air/liquid interface, which favors the -(CF2)7CF3 moieties self-assembling on the polymer surface during film formation. This observation suggests that the polyacrylate block structure in fluorinated diblock copolymers, in addition to the fluorinated monomer content, plays an important role in structure formation on the solid surface.  相似文献   

15.
Well‐defined glycidyl methacrylate (GMA) based di‐ and triblock copolymers, with self‐activation and self‐initiation behaviors by incorporation of 2‐(diethylamino) ethyl methacrylate (DEA) blocks, were synthesized via ambient temperature atom transfer radical polymerization (ATRP). The stability of the GMA pendant oxirane rings in tertiary amine environments at ambient temperature was investigated. More importantly, both self‐activation behavior in oxirane ring opening addition reaction and self‐initiation behavior in post‐cure oxirane ring opening crosslinking of these block copolymers were evidenced by 1H NMR studies. The results demonstrated that the reactivity of pendent oxirane rings was strongly dependant on the nucleophilicity and steric hindrance of tertiary amine moieties and temperature. This facilitated the synthesis of well‐defined block copolymers of GMA and DEA via sequential monomer addition ATRP, particularly for polymerization of GMA monomer at ambient temperature. Moreover, these one‐component GMA based block polymers have novel self‐activation and self‐initiation properties, rendering some potential applications in both enzyme immobilization and GMA‐based thermosetting materials. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2947–2958, 2007  相似文献   

16.
We demonstrate, for the first time, the synthesis of model poly(benzyl methacrylate) [P(BnMA)] brushes of very high thickness (>300 nm) on silicon wafer. P(BnMA) brush is also synthesized from the surface of silica nanoparticles, from a covalently anchored initiator monolayer, using ambient temperature ATRP. The kinetic studies and block copolymerization from the surface anchored P(BnMA)-Br macroinitiator showed that the polymerization was controlled in nature. AFM, ellipsometry, and water contact angle were used for the characterization of the polymer brush. The grafting density of the P(BnMA) brush, formed by immersion in a dilute monomer solution, was relatively less (~11% less) in comparison to that obtained by immersion in neat monomer under similar conditions. The P(BnMA)-Br macroinitiator brushes were used to synthesize P(BnMA-b-S) diblock copolymer brushes by the ATRP of styrene at 95 °C. The P(BnMA-b-S) brushes showed stimulus response to a selective solvent and various nanopatterns were observed according to the composition of the block copolymer.  相似文献   

17.
A new two-step procedure for the preparation of block copolymers by a free radical process is proposed. A trichloromethyl-terminated azo initiator is synthesized and subsequently used to polymerize a first monomer, leading to a trichloromethyl-functionalized polymer. Secondly, the preformed polymer is used as a macroinitiator to initiate the atom transfer radical polymerization (ATRP) of a second monomer, to generate a block copolymer. The principle of this method is illustrated with butyl acrylate as the first monomer, and styrene for the ATRP step.  相似文献   

18.

The homo‐ and copolymers via atom transfer radical (co)polymerization (ATRP) of phenacyl methacrylate (PAMA) with methyl methacrylate (MMA) and t‐butyl methacrylate (t‐BMA) was performed in bulk at 90°C in the presence of ethyl 2‐bromoacetate, cuprous(I)bromide (CuBr), and 2,2′‐bipyridine. The polymerization of PAMA was carried out at 70, 80, and 100°C. Also, free‐radical polymerization of PAMA was carried out at 60°C. Characterization using FT‐IR and 13C‐NMR techniques confirmed the formation of a five‐membered lactone ring through ATRP. The in situ addition of methylmethacrylate to a macroinitiator of poly(phenacyl methacrylate) [Mn=2800, Mw/Mn=1.16] afforded an AB‐type block copolymer [Mn=13600, Mw/Mn=1.46]. When PAMA units increased in the living copolymer system, the Mn values and the polydispersities were decreased (1.1<Mw/Mn<1.79). The monomer reactivity ratios were computed using Kelen‐Tüdös (K‐T), Fineman‐Ross (F‐R) and Tidwell‐Mortimer (T‐M) methods and were found to be r1= 1.17; r2= 0.76; r1=1.16; r2=0.75 and r1=1.18; r2=0.76, respectively (r1=is monomer reactivity ratio of PAMA). The initial decomposition temperatures of the resulting copolymers were measured by TGA. Blends of poly(PAMA) and poly(MMA) obtained via the ATRP method have been characterized by differential thermal and thermogravimetric analyses.  相似文献   

19.
Controlled free radical polymerization of sugar-carrying methacrylate, 3-O-methacryloyl-1,2 : 5,6-di-O-isopropylidene-d-glucofuranose (MAIpGlc) was achieved by the atom transfer radical polymerization (ATRP) technique with an alkyl halide/copper-complex system in veratrole at 80°C. The time–conversion first-order plot was linear and the number-average molecular weight increased in direct proportion to the ratio of the monomer conversion to the initial initiator concentration, providing PMAIpGlc with a low polydispersity. The sequential addition of the two monomers styrene (S) and MAIpGlc afforded a block copolymer of the type PS-b-PMAIpGlc. The acidolysis of the homo- and block copolymers gave well-defined glucose-carrying water-soluble polymers PMAGlc and PS-b-PMAGlc, respectively. The amphiphilic PS-b-PMAGlc block copolymer exhibited a microdomain surface morphology with spherical PS domains in a PMAGlc matrix. © 1998 John Wiley & Sons, Inc. J. Polym. Sci. A Polym. Chem. 36: 2473–2481, 1998  相似文献   

20.
Densely grafting copolymers of ethyl cellulose with polystyrene and poly(methyl methacrylate) were synthesized through atom transfer radical polymerization (ATRP). First, the residual hydroxyl groups on the ethyl cellulose reacted with 2‐bromoisobutyrylbromide to yield 2‐bromoisobutyryloxy groups, known to be an efficient initiator for ATRP. Subsequently, the functional ethyl cellulose was used as a macroinitiator in the ATRP of methyl methacrylate and styrene in toluene in conjunction with CuBr/N,N,N′,N″,N″‐pentamethyldiethylenetriamine as a catalyst system. The molecular weight of the graft copolymers increased without any trace of the macroinitiator, and the polydispersity was narrow. The molecular weight of the side chains increased with the monomer conversion. A kinetic study indicated that the polymerization was first‐order. The morphology of the densely grafted copolymer in solution was characterized through laser light scattering. The individual densely grafted copolymer molecules were observed through atomic force microscopy, which confirmed the synthesis of the densely grafted copolymer. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4099–4108, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号