首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Time-resolved production of HO2 and DO2 from the reactions of nondeuterated and deuterated ethyl and propyl radicals with O2 are measured as a function of temperature and pressure in the "transition region" between 623 and 748 K using the technique of laser photolysis/long path frequency modulation spectroscopy. Experimental measurements, using both pulsed-photolytic Cl-atom-initiated oxidation of ethane and propane and direct photolysis of ethyl, n-propyl, and isopropyl iodides, are compared to kinetic models based on the results of time-dependent master equation calculations with ab initio characterization of stationary points. The formation of DO2 and HO2 from the subsequent reaction of the alkyl radicals with O2 is followed by infrared frequency modulation spectroscopy. The concentration of I atoms is simultaneously monitored by direct absorption of a second laser probe on the spin-orbit transition. The kinetic models accurately describe the time scale and amplitude of the DO2 and HO2 formation resulting from C2D5 + O2, n-C3D7 + O2, i-C3D7 + O2, and i-C3H7 + O2. Overall, a very good level of agreement is found between theory and experiments over a wide range of temperatures, pressures, and O2 concentrations. Good agreement is also found between previous literature studies and the theory presented in this work except in the case of the high-temperature rate coefficients for the reaction of i-C3H7 + O2 to form propene. A reinvestigation of the high-temperature kinetics of the i-C3H7 + O2 reaction appears warranted. The results from the present work suggest that the theory for formation of HO2 from the reactions of ethyl and both isomeric forms of propyl radicals with O2 are very well established at this time. It is hoped that these reactions can now form the groundwork for the study and interpretation of larger and more complex R + O2 systems.  相似文献   

2.
Alkylamines (RCH(2)NH(2), R = H, CH(3), C(2)H(5), C(3)H(7), i-C(3)H(7)) have been investigated by dissociative photoionization by threshold photoelectron photoion coincidence spectroscopy (TPEPICO). The 0 K dissociation limits (9.754 +/- 0.008, 9.721 +/- 0.008, 9.702 +/- 0.012, and 9.668 +/- 0.012 eV for R = CH(3), C(2)H(5), C(3)H(7), i-C(3)H(7), respectively) have been determined by preparing energy-selected ions and collecting the fractional abundances of parent and daughter ions. All alkylamine cations produce the methylenimmonium ion, CH(2)NH(2)+, and the corresponding alkyl free radical. Two isodesmic reaction networks have also been constructed. The first one consists of the alkylamine parent molecules, and the other of the alkyl radical photofragments. Reaction heats within the isodesmic networks have been calculated at the CBS-APNO and W1U levels of theory. The two networks are connected by the TPEPICO dissociation energies. The heats of formation of the amines and the alkyl free radicals are then obtained by a modified least-squares fit to minimize the discrepancy between the TPEPICO and the ab initio values. The analysis of the fit reveals that the previous experimental heats of formation are largely accurate, but certain revisions are suggested. Thus, Delta(f)Ho(298K)[CH(3)NH(2)(g)] = -21.8 +/- 1.5 kJ mol-1, Delta(f)Ho(298K)[C(2)H(5)NH(2)(g)] = -50.1 +/- 1.5 kJ mol(-1), Delta(f)Ho(298K)[C(3)H(7)NH(2)(g)] = -70.8 +/- 1.5 kJ mol(-1), Delta(f)Ho(298K)[C(3)H(7)*] = 101.3 +/- 1 kJ mol(-1), and Delta(f)Ho(298K)[i-C(3)H(7)*] = 88.5 +/- 1 kJ mol(-1). The TPEPICO and the ab initio results for butylamine do not agree within 1 kJ mol-1; therefore, no new heat of formation is proposed for butylamine. It is nevertheless indicated that the previous experimental heats of formation of methylamine, propylamine, butylamine, and isobutylamine may have been systematically underestimated. On the other hand, the error in the ethyl radical heat of formation is found to be overestimated and can be decreased to +/- 1 kJ mol(-1); thus, Delta(f)Ho(298K)[C(2)H(5).] = 120.7 +/- 1 kJ mol(-1). On the basis of the data analysis, the heat of formation of the methylenimmonium ion is confirmed to be Delta(f)Ho(298K)[CH(2)NH(2)+] = 750.3 +/- 1 kJ mol(-1).  相似文献   

3.
The gas phase reactions of CH3O2 + CH3O2, HO2 + HO2, and CH3O2 + HO2 in the presence of water vapor have been studied at temperatures between 263 and 303 K using laser flash photolysis coupled with UV time-resolved absorption detection at 220 and 260 nm. Water vapor concentrations were quantified using tunable diode laser spectroscopy operating in the mid-IR. The HO2 self-reaction rate constant is significantly enhanced by water vapor, consistent with what others have reported, whereas the CH3O2 self-reaction and the cross-reaction (CH3O2 + HO2) rate constants are nearly unaffected. The enhancement in the HO2 self-reaction rate coefficient occurs because of the formation of a strongly bound (6.9 kcal mol(-1)) HO2 x H2O complex during the reaction mechanism where the H2O acts as an energy chaperone. The nominal impact of water vapor on the CH3O2 self-reaction rate coefficient is consistent with recent high level ab initio calculations that predict a weakly bound CH3O2 x H2O complex (2.3 kcal mol(-1)). The smaller binding energy of the CH3O2 x H2O complex does not favor its formation and consequent participation in the methyl peroxy self-reaction mechanism.  相似文献   

4.
The rate constants for the gas-phase reactions of isopropyl- and tert-butylperoxy radicals with nitric oxide (NO) have been studied at 298 +/- 2 K and a total pressure of 3-4 Torr (He buffer) using a laser flash photolysis technique coupled with a time-resolved negative-ionization mass spectrometry. The alkyl peroxy radicals were generated by the reaction of alkyl radicals with excess O(2), where alkyl radicals were prepared by laser photolysis of several precursor molecules. The rate constants were determined to be k(i-C(3)H(7)O(2) + NO) = (8.0 +/- 1.5) x 10(-12) and k(t-C(4)H(9)O(2) + NO) = (8.6 +/- 1.4) x 10(-12) cm(3) molecule(-1) s(-1). The results in combination with our previous studies are discussed in terms of the systematic reactivity of alkyl peroxy radicals toward NO.  相似文献   

5.
The combination of ion-imaging and vacuum-ultraviolet (vuv) single-photon ionization is used to study the internal energy dependence of the relative photoionization yields of the C(2)H(5),n-C(3)H(7), and i-C(3)H(7) radicals following the 266 nm photodissociation of the corresponding alkyl iodides. The comparison of the ion images obtained by vuv photoionization of the radical with those obtained by two-photon-resonant, three-photon ionization of the complementary I (2)P(32) and I*(2)P(12) atoms allows the extraction of the internal energy dependence of the cross sections. Factors influencing the appearance of the ion images in the different detection channels are discussed, including the secondary fragmentation of the neutral radicals, Franck-Condon factors for the photoionization process, and the unimolecular fragmentation of the parent photoions.  相似文献   

6.
Quantitative identification of isomers of hydrocarbon radicals in flames is critical to understanding soot formation. Isomers of C4H3 and C4H5 in flames fueled by allene, propyne, cyclopentene, or benzene are identified by comparison of the observed photoionization efficiencies with theoretical simulations based on calculated ionization energies and Franck-Condon factors. The experiments combine molecular-beam mass spectrometry (MBMS) with photoionization by tunable vacuum-ultraviolet synchrotron radiation. The theoretical simulations employ the rovibrational properties obtained with B3LYP/6-311++G(d,p) density functional theory and electronic energies obtained from QCISD(T) ab initio calculations extrapolated to the complete basis set limit. For C4H3, the comparisons reveal the presence of the resonantly stabilized CH2CCCH isomer (i-C4H3). For C4H5, contributions from the CH2CHCCH2 (i-C4H5) and some combination of the CH3CCCH2 and CH3CHCCH isomers are evident. Quantitative concentration estimates for these species are made for allene, cyclopentene, and benzene flames. Because of low Franck-Condon factors, sensitivity to n-isomers of both C4H3 and C4H5 is limited. Adiabatic ionization energies, as obtained from fits of the theoretical predictions to the experimental photoionization efficiency curves, are within the error bars of the QCISD(T) calculations. For i-C4H3 and i-C4H5, these fitted adiabatic ionization energies are (8.06 +/- 0.05) eV and (7.60 +/- 0.05) eV, respectively. The good agreement between the fitted and theoretical ionization thresholds suggests that the corresponding theoretically predicted radical heats of formation (119.1, 76.3, 78.7, and 79.1 kcal/mol at 0 K for i-C4H3, i-C4H5, CH3CCCH2, and CH3CHCCH, respectively) are also quite accurate.  相似文献   

7.
The overall rate constant for the radical-radical reaction C2H5 + HO2 --> products has been determined at room temperature by means of time-resolved mass spectrometry using a laser photolysis/flow reactor combination. Excimer laser photolysis of gas mixtures containing ethane, hydrogen peroxide, and oxalyl chloride was employed to generate controlled concentrations of C2H5 and HO2 radicals by the fast H abstraction reactions of the primary radicals Cl and OH with C2H6 and H2O2, respectively. By careful adjustments of the radical precursor concentrations, the title reaction could be measured under almost pseudo-first-order conditions with the concentration of HO2 in large excess over that of C2H5. From detailed numerical simulations of the measured concentration-time profiles of C2H5 and HO2, the overall rate constant for the reaction was found to be k1(293 K) = (3.1 +/- 1.0) x 10(13) cm3 mol(-1) s(-1). C2H5O could be confirmed as a direct reaction product.  相似文献   

8.
The title reactions were studied using laser flash photolysis/laser-induced-fluorescence (FP-LIF) techniques. The two spin-orbit states, Cl*(2P(1/2)) and Cl(2P(3/2)), were detected using LIF at 135.2 and 134.7 nm, respectively. Measured reaction rate constants were as follows (units of cm3 molecule(-1) s(-1)): k(Cl(2P(3/2))+CH3OH) = (5.35 +/- 0.24) x 10(-11), k(Cl(2P(3/2))+C2H5OH) = (9.50 +/- 0.85) x 10(-11), k(Cl(2P(3/2))+n-C3H7OH) = (1.71 +/- 0.11) x 10(-10), and k(Cl(2P(3/2))+i-C3H7OH) = (9.11 +/- 0.60) x 10(-11). Measured rate constants for total removal of Cl*(2P(1/2)) in collisions with CH3OH, C2H5OH, n-C3H7OH, and i-C3H7OH were (1.95 +/- 0.13) x 10(-10), (2.48 +/- 0.18) x 10(-10), (3.13 +/- 0.18) x 10(-10), and (2.84 +/- 0.16) x 10(-10), respectively; quoted errors are two-standard deviations. Although spin-orbit excited Cl*(2P(1/2)) atoms have 2.52 kcal/mol more energy than Cl(2P(3/2)), the rates of chemical reaction of Cl*(2P(1/2)) with CH3OH, C2H5OH, n-C3H7OH, and i-C3H7OH are only 60-90% of the corresponding Cl(2P(3/2)) atom reactions. Under ambient conditions spin-orbit excited Cl* atoms are responsible for 0.5%, 0.5%, 0.4%, and 0.7% of the observed reactivity of thermalized Cl atoms toward CH3OH, C2H5OH, n-C3H7OH, and i-C3H7OH, respectively.  相似文献   

9.
The kinetics of the reactions of 1-and 2-butoxy radicals have been studied using a slow-flow photochemical reactor with GC-FID detection of reactants and products. Branching ratios between decomposition, CH3CH(O*)CH2CH3 --> CH3CHO + C2H5, reaction (7), and reaction with oxygen, CH3CH(O*)CH2CH3+ O2 --> CH3C(O)C2H5+ HO2, reaction (6), for the 2-butoxy radical and between isomerization, CH3CH2CH2CH2O* --> CH2CH2CH2CH2OH, reaction (9), and reaction with oxygen, CH3CH2CH2CH2O* + O2 --> C3H7CHO + HO2, reaction (8), for the 1-butoxy radical were measured as a function of oxygen concentration at atmospheric pressure over the temperature range 250-318 K. Evidence for the formation of a small fraction of chemically activated alkoxy radicals generated from the photolysis of alkyl nitrite precursors and from the exothermic reaction of 2-butyl peroxy radicals with NO was observed. The temperature dependence of the rate constant ratios for a thermalized system is given by k7/k6= 5.4 x 10(26) exp[(-47.4 +/- 2.8 kJ mol(-1))/RT] molecule cm(-3) and k9/k8= 1.98 x 10(23) exp[(-22.6 +/- 3.9 kJ mol(-1))/RT] molecule cm(-3). The results agree well with the available experimental literature data at ambient temperature but the temperature dependence of the rate constant ratios is weaker than in current recommendations.  相似文献   

10.
The resonantly stabilized radical i-C(4)H(5) (CH(2)CCHCH(2)) is an important intermediate in the combustion of unsaturated hydrocarbons and is thought to be involved in the formation of polycyclic aromatic hydrocarbons through its reaction with acetylene (C(2)H(2)) to form benzene + H. This study uses quantum chemistry and statistical reaction rate theory to investigate the mechanism and kinetics of the i-C(4)H(5) + O(2) reaction as a function of temperature and pressure, and unlike most resonantly stabilized radicals we show that i-C(4)H(5) is consumed relatively rapidly by its reaction with molecular oxygen. O(2) addition occurs at the vinylic and allenic radical sites in i-C(4)H(5), with respective barriers of 0.9 and 4.9 kcal mol(-1). Addition to the allenic radical form produces an allenemethylperoxy radical adduct with only around 20 kcal mol(-1) excess vibrational energy. This adduct can isomerize to the ca. 14 kcal mol(-1) more stable 1,3-divinyl-2-peroxy radical via concerted and stepwise processes, both steps with barriers around 10 kcal mol(-1) below the entrance channel energy. Addition of O(2) to the vinylic radical site in i-C(4)H(5) directly forms the 1,3-divinyl-2-peroxy radical with a small barrier and around 36.8 kcal mol(-1) of excess energy. The 1,3-divinyl-2-peroxy radical isomerizes via ipso addition of the O(2) moiety followed by O atom insertion into the adjacent C-C bond. This process forms an unstable intermediate that ultimately dissociates to give the vinyl radical, formaldehyde, and CO. At higher temperatures formation of vinylacetylene + HO(2), the vinoxyl radical + ketene, and the 1,3-divinyl-2-oxyl radical + O paths have some importance. Because of the adiabatic transition states for O(2) addition, and significant reverse dissociation channels in the peroxy radical adducts, the i-C(4)H(5) + O(2) reaction proceeds to new products with rate constant of around 10(11) cm(3) mol(-1) s(-1) at typical combustion temperatures (1000-2000 K). For fuel-rich flames we show that the reaction of i-C(4)H(5) with O(2) is likely to be faster than that with C(2)H(2), bringing into question the importance of the i-C(4)H(5) + C(2)H(2) reaction in initiating ring formation in sooting flames.  相似文献   

11.
Alkyl peroxy radicals are synthesized in a supersonic jet expansion by the initial production of alkyl radicals and subsequent reaction with molecular oxygen. Parent ions CH3OO+/CD3OO+ are observed employing vacuum ultraviolet (VUV) single photon ionizationtime-of-flight mass spectroscopy (TOFMS). Employing infrared (IR) + VUV photofragmentation detected spectroscopy, rotationally resolved infrared spectra of jet-cooled CH3OO and CD3OO radicals are recorded for the A 2A' <-- X 2A" transition by scanning the IR laser frequency while monitoring the CH3 + and CD3 + ion signals generated by the VUV laser. The band origins of the A 2A'<--X 2A" transition for CH3OO and CD3OO are identified at 7381 and 7371 cm(-1), respectively. Rotational simulation for the CH3OO and CD3OO 0(0) 0 transitions of A<--X yields a rotational temperature for these radicals of approximately 30 K. With the aid of ab initio calculations, two and five vibrational modes for the A 2A' excited electronic state are assigned for CH3OO and CD3OO radicals, respectively. Both experimental and theoretical results suggest that the ground electronic state of the ions of ethyl and propyl peroxy radicals are not stable although their ionization energies (IE) are less than 10.5 eV. The C2H5OO+/C3H7OO+ cations can readily decompose to C2H5 +/C3H7 + and O2. This is partially responsible for the inability of IR+VUV photofragmentation spectroscopy to detect the near IR A<--X electronic transition for these radicals.  相似文献   

12.
A systematic theoretical study of the reactions of HO2 with RO2 has been carried out. The major concern of the present work is to gain insight into the reaction mechanism and then to explain experimental observations and to predict new product channels for this class of reactions of importance in the atmosphere. In this paper, the reaction mechanisms for two reactions, namely, HO2 + CH3O2 and HO2 + CH2FO2, are reported. Both singlet and triplet potential energy surfaces are investigated. The complexity of the present system makes it impossible to use a single ab initio method to map out all the reaction paths. Various ab initio methods including MP2, CISD, QCISD(T), CCSD(T), CASSCF, and density function theory (B3LYP) have been employed with the basis sets ranging from 6-31G(d) to an extrapolated complete basis set (CBS) limit. It has been established that the CCSD(T)/cc-pVDZ//B3LYP/6-311G(d,p) scheme represents the most feasible method for our systematic study. For the HO2 + CH3O2 reaction, the production of CH3OOH is determined to be the dominant channel. For the HO2 + CH2FO2 reaction, both CH2FOOH and CHFO are major products, whereas the formation of CHFO is dominant in the overall reaction. The computational findings give a fair explanation for the experimental observation of the products.  相似文献   

13.
Laser desorption/ionisation and laser ablation of solid selenium trioxide, as well as the gas-phase behaviour of selenium trioxide, were studied. Selenium trioxide undergoes photochemical decomposition and, from the mass spectra obtained by laser desorption/ionisation time-of-flight mass spectrometry (LDI-TOF-MS), the following species were identified: O-, O2-, O3-, SeO-, SeO2-, SeO3-, SeO4-, Se2O7-, Se3O11-, and Se4O14-. Formation of the selenium superoxide SeO4- anion is described in this work for the first time. In addition, low-abundance selenium species such as Se2O8H2-, Se3O11H-, and Se4O15H2- were also detected. The stoichiometry of all ions was confirmed via isotopic pattern modeling and/or post-source decay (PSD) analysis. Photolysis of selenium trioxide leads partly to ozone formation. It was found that the most likely mechanisms of selenium superoxide formation are oxidation of selenium trioxide with ozone and/or reactive oxygen radicals, or photolysis of selenium trioxide tetramer (SeO3)4. Therefore, ab initio calculations were performed to support the mass spectrometric evidence and to suggest probable geometries for selenium superoxide anion SeO4- and diselenium superoxide anion Se2O7-, as well as to provide insight into and/or predict possible formation pathways. It has been found that both cyclic and non-cyclic peroxide structures of SeO4- and Se2O7- ions are possible. In addition, the SeO4 structure was also calculated guided by thermodynamic considerations using Gaussian-2 methodology, and the inferred stability of the SeO4 neutral molecule was supported by ab initio calculations.  相似文献   

14.
The production of OH and HO(2) in Cl-initiated oxidation of cyclohexane has been measured using pulsed-laser photolytic initiation and continuous-laser absorption detection. The experimental data are modeled by master equation calculations that employ new G2(MP2)-like ab initio characterizations of important stationary points on the cyclo-C(6)H(11)O(2) surface. These ab initio calculations are a substantial expansion on previously published characterizations, including explicit consideration of conformational changes (chair-boat, axial-equatorial) and torsional potentials. The rate constants for the decomposition and ring-opening of cyclohexyl radical are also computed with ab initio based transition state theory calculations. Comparison of kinetic simulations based on the master equation results with the present experimental data and with literature determinations of branching fractions suggests adjustment of several transition state energies below their ab initio values. Simulations with the adjusted values agree well with the body of experimental data. The results once again emphasize the importance of both direct and indirect components of the kinetics for the production of both HO(2) and OH in radical + O(2) reactions.  相似文献   

15.
The reactivity of carbonyl substituted methyl oxonium ions (R1R2COCH3+) towards ammonia has been investigated using an FT-ICR mass spectrometer and ab initio calculations. The monosubstituted ions (R1 = H; R2 = H, CH3, C2H5 and i-C3H7) show different reaction patterns with variable degree of: (1) nucleophilic substitution, (2) addition-elimination and (3) proton transfer, when reacted with ammonia. In all cases addition-elimination dominates over nucleophilic substitution, and the observed reactions are slow. The trends in reactivity are consistent with the alkyl group's electronic properties, as expressed by a single parameter linear or slightly non-linear model.  相似文献   

16.
The gas-phase radical-radical reaction dynamics of O(3P) + C3H5 --> H(2S) + C3H4O was studied at an average collision energy of 6.4 kcal/mol in a crossed beam configuration. The ground-state atomic oxygen [O(3P)] and allyl radicals (C3H5) were generated by the photolysis of NO2 and the supersonic flash pyrolysis of allyl iodide, respectively. Nascent hydrogen atom products were probed by the vacuum-ultraviolet-laser induced fluorescence spectroscopy in the Lyman-alpha region centered at 121.6 nm. With the aid of the CBS-QB3 level of ab initio theory, it has been found that the barrierless addition of O(3P) to C3H5 forms the energy-rich addition complexes on the lowest doublet potential energy surface, which are predicted to undergo a subsequent direct decomposition step leading to the reaction products H + C3H4O. The major counterpart C3H4O of the probed hydrogen atom is calculated to be acrolein after taking into account the factors of barrier height, reaction enthalpy, and the number of intermediates involved along the reaction pathway. The nascent H-atom Doppler profile analysis shows that the average center-of-mass translational energy of the H + C3H4O products and the fraction of the total available energy released as the translational energy were determined to be 3.83 kcal/mol and 0.054, respectively. On the basis of comparison with statistical calculations, the reaction proceeds through the formation of short-lived addition complexes rather than statistical, long-lived intermediates, and the polyatomic acrolein product is significantly internally excited at the moment of the decomposition.  相似文献   

17.
The photodissociation dynamics of propyl iodides n-C3H7I and i-C3H7I near 280 and 304 nm has been investigated with our mini-TOF photofragment translational spectrometer. When a single laser is applied for both the photodissociation of parent molecules and the REMPI of I atom photofragments, the TOF spectra of photofragments I*(2P1/2) and I (2P3/2) are obtained at four different wavelengths for these two iodides. For n-C3H7I, some small vibrational peaks are partially resolved (with separation of approximately 522 cm-1, corresponding to the RCH2 deformation frequency of the fragment n-C3H7) at 281.73, 279.71, and 304.67 nm. These results show that the RCH2 deformation is mostly excited. For i-C3H7I, we obtain some partially resolved vibrational peaks (with separation of approximately 352 cm-1, corresponding to the HC(CH3)2 out-of-plane bending frequency of the fragment i-C3H7) at 281.73 nm only. For n-C3H7I, the partitioning values of the available energy Eint/Eavl are 0.48 at 281.73 nm and 0.49 at 304.02 nm for the I* channel, and 0.52 at both 279.71 and 304.67 nm for the I channel. These energy partitioning values are comparable with the previous results at different wavelengths in the literature. For i-C3H7I, the Eint/Eavl values are 0.61 at 281.73 nm, 0.65 at 304.02 nm for the I* channel, and 0.62 at 279.71 nm, 0.49 at 304.67 nm for the I channel. The potential-energy-surface crossing and the beta values have also been discussed.  相似文献   

18.
Infrared spectroscopy has been used to detect HO(2) and HO(3) radicals in H(2)O + O(2) ice mixtures irradiated with 0.8 MeV protons. In these experiments, HO(2) was formed by the addition of an H atom to O(2) and HO(3) was formed by a similar addition of H to O(3). The band positions observed for HO(2) and HO(3) in H(2)O-ice are 1142 and 1259 cm(-1), respectively, and these assignments were confirmed with (18)O(2). HO(2) and HO(3) were also observed in irradiated H(2)O + O(3) ice mixtures, as well as in irradiated H(2)O(2) ice. The astronomical relevance of these laboratory measurements is discussed.  相似文献   

19.
The photoelectron spectra of the structural isomers of the three- and four-carbon enolate anions, n-C3H5O(-), i-C3H5O(-), n-C4H7O(-), s-C4H7O(-), and i-C4H7O(-) have been measured at 355 nm. Both the X(2A' ') ground and A(2A') first excited states of the corresponding radicals were accessed from the X(1A') ground state of the enolate anions. The separation energies of the ground and first excited states (T0) were determined: T0[(E)-n-C3H5O] = 1.19 +/- 0.02 eV, T0[(Z)-n-C3H5O] = 0.99 +/- 0.02 eV, T0[i-C3H5O] = 1.01 +/- 0.02 eV, T0[n-C4H7O] = 1.19 +/- 0.02 eV, T0[(2,3)-s-C4H7O] = 1.25 +/- 0.02 eV, T0[(1,2)-s-C4H7O] = 0.98 +/- 0.02 eV, and T0[i-C4H7O] = 1.36 +/- 0.02 eV. The effects of alkyl substitution on the vibronic structure and energetics previously observed in the vinoxy radical are discussed. The X(1A')-X(2A' ') relative stability is strongly influenced by substitution whereas the X(1A')-A(2A') relative stability remains nearly constant for all of the observed structural isomers. Alkyl substitution at the carbonyl carbon affects vibronic structure more profoundly than the energetics, while the converse is observed upon alkyl substitution at the alpha carbon.  相似文献   

20.
The kinetics of the reaction between O atoms and OH radicals, both in their electronic ground state, have been investigated at temperatures down to ca. 39 K. The experiments employed a CRESU (Cinétique deRéaction en Ecoulement Supersonique Uniforme) apparatus to attain low temperatures. Both reagents were created using pulsed laser photolysis at 157.6 nm of mixtures containing H2O and O2 diluted in N2 carrier gas. OH radicals were formed by both direct photolysis of H2O and the reaction between O(1D) atoms and H2O. O(3P) atoms were formed both as a direct product of O2 photolysis and by the rapid quenching of O(1D) atoms formed in that photolysis by N2 and O2. The rates of removal of OH radicals were observed by laser-induced fluorescence, and concentrations of O atoms were estimated from a knowledge of the absorption cross-section for O2 at 157.6 nm and of the measured fluence from the F2 laser at this wavelength. To obtain a best estimate of the rate constants for the O + OH reaction, we had to correct the raw experimental data for the following: (a) the decrease in the laser fluence along the jet due to the absorption by O2 in the gas mixture, (b) the increase in temperature, and consequent decrease in gas density, as a result of energy released in the photochemical and chemical processes that occurred, and (c) the formation of OH(v = 0) as a result of relaxation, particularly by O2, of OH radicals formed in levels v > 0. Once these corrections were made, the rate constant for reaction between OH and O(3P) atoms showed little variation in the temperature range of 142 to 39 K and had a value of (3.5 +/- 1.0) x 10(-11) cm3 molecule(-1) s(-1). It is recommended that this value is used in future chemical models of dense interstellar clouds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号