首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
Since the first report of silver(I)-catalyzed asymmetric aldol-type reaction of activated isocyanides with aldehydes using a chiral ferrocenylphosphine as a chiral phosphine ligand has been appeared in 1990, various chiral phosphine-silver(I) catalysts have been utilized in asymmetric transformations. This feature articles describes recent examples of chiral phosphine-silver(I) complex-catalyzed asymmetric reactions such as allylation, aldol reaction, Mannich-type reaction, hetero-Diels-Alder reaction, 1,3-dipolar cycloaddition and nitroso aldol reaction.  相似文献   

2.
Catalytic asymmetric aldol reactions in aqueous media have been developed using chiral zinc complex. The aldol products have been obtained in high yields, high diastereocontrol, and good level of enantioselectivity. Various aromatic and alpha,beta-unsaturated aldehydes and silyl enol ethers derived from ketones can be employed in this reaction to provide the aldol adducts in good to high yield. The elaborated catalytic system has been found as selective for aliphatic aldehydes as well.  相似文献   

3.
Direct asymmetric catalytic aldol reactions have been successfully performed using aldehydes and unmodified ketones together with commercially available chiral cyclic secondary amines as catalysts. Structure-based catalyst screening identified L-proline and 5,5-dimethyl thiazolidinium-4-carboxylate (DMTC) as the most powerful amino acid catalysts for the reaction of both acyclic and cyclic ketones as aldol donors with aromatic and aliphatic aldehydes to afford the corresponding aldol products with high regio-, diastereo-, and enantioselectivities. Reactions employing hydroxyacetone as an aldol donor provide anti-1,2-diols as the major product with ee values up to >99%. The reactions are assumed to proceed via a metal-free Zimmerman-Traxler-type transition state and involve an enamine intermediate. The observed stereochemistry of the products is in accordance with the proposed transition state. Further supporting evidence is provided by the lack of nonlinear effects. The reactions tolerate a small amount of water (<4 vol %), do not require inert reaction conditions and preformed enolate equivalents, and can be conveniently performed at room temperature in various solvents. In addition, reaction conditions that facilitate catalyst recovery as well as immobilization are described. Finally, mechanistically related addition reactions such as ketone additions to imines (Mannich-type reactions) and to nitro-olefins and alpha,beta-unsaturated diesters (Michael-type reactions) have also been developed.  相似文献   

4.
Aldol reaction involving chiral amines as organocatalysts through enamine formation, like class-I aldolases, is one of the thriving areas of general interest and widely applicable asymmetric reactions. There are many natural and synthetic chiral templates known to work as efficient organocatalysts, but using carbohydrate templates for chiral induction in asymmetric aldol reactions is a relatively new area developed in the recent years. This review focuses on carbohydrates alone or their conjugates with previously known chiral moieties as organocatalysts for asymmetric aldol reactions.  相似文献   

5.
A series of chiral amino oxazolines were synthesized and screened as organocatalysts for asymmetric intermolecular aldol reactions between acetone and aromatic aldehydes. The reaction works well with a range of aromatic aldehydes showing good to high selectivity. The present new system of the organocatalyst was effective for the asymmetric aldol reaction for a wide range of aromatic aldehydes and isatin to carry out an asymmetric carbon–carbon bond forming reaction with a high enantioselectivity of up to 91%.  相似文献   

6.
We have developed asymmetric Mukaiyama aldol reactions of silicon enolates with aldehydes catalyzed by chiral FeII and BiIII complexes. Although previous reactions often required relatively harsh conditions, such as strictly anhydrous conditions, very low temperatures (?78 °C), etc., the reactions reported herein proceeded in the presence of water at 0 °C. To find appropriate chiral water‐compatible Lewis acids for the Mukaiyama aldol reaction, many Lewis acids were screened in combination with chiral bipyridine L1 , which had previously been found to be a suitable chiral ligand in aqueous media. Three types of chiral catalysts that consisted of a FeII or BiIII metal salt, a chiral ligand ( L1 ), and an additive have been discovered and a wide variety of substrates (silicon enolates and aldehydes) reacted to afford the desired aldol products in high yields with high diastereo‐ and enantioselectivities through an appropriate selection of one of the three catalytic systems. Mechanistic studies elucidated the coordination environments around the FeII and BiIII centers and the effect of additives on the chiral catalysis. Notably, both Brønsted acids and bases worked as efficient additives in the FeII‐catalyzed reactions. The assumed catalytic cycle and transition states indicated important roles of water in these efficient asymmetric Mukaiyama aldol reactions in aqueous media with the broadly applicable and versatile catalytic systems.  相似文献   

7.
The aldol reaction is one of the most important carbon-carbon bond-forming reactions in organic chemistry. Asymmetric direct cross-aldol reaction of two different aldehydes has been regarded as a difficult reaction because of the side reactions such as self-aldol reaction and over reaction. We found that trifluoromethyl-substituted diarylprolinol, α,α-bis[3,5-bis(trifluoromethyl)phenyl]-2-pyrrolidinemethanol ( 1 ), is an effective organocatalyst that promotes several cross-aldol reactions of aldehydes with excellent diastereo- and enantioselectivities. Acetaldehyde can be employed as a suitable nucleophilic aldehyde. Successful electrophilic aldehydes are ethyl glyoxylate, chloroacetaldehyde, dichloroacetaldehyde, chloral, α-alkyl-α-oxo aldehyde, trifluoroacetaldehyde, glyoxal, alkenyl aldehyde, alkynyl aldehyde, and formaldehyde. Some of the aldehydes are commercially available as a polymer solution, an aqueous solution, or in the hydrated form. They can be used directly in the asymmetric aldol reaction as a commercially available form, which is a synthetic advantage. Given that the obtained aldol products possess several functional groups along with a formyl moiety, they are synthetically useful chiral building blocks.  相似文献   

8.
Unsaturated aldehydes are exquisite building blocks for further transformations in polyketide synthesis. Besides standard transformations that take advantage of the aldehyde functionality, the conjugate addition of hydrides followed by internal protonation allows access to alpha chiral aldehydes. Even though vinylogous Mukaiyama aldol reactions have been used in natural product syntheses before, the first enantioselective Mukaiyama aldol reaction of aldehyde-derived dienolates is described.  相似文献   

9.
The Cinchona alkaloid derived chiral ammonium salt developed by Park and Jew functions as an effective catalyst for the synthesis of beta-hydroxy alpha-amino acids via asymmetric aldol reactions under homogeneous conditions. The syn diastereomers are obtained in good ee, and aryl-substituted aliphatic aldehydes are the best substrates for the reaction. These results represent the highest ee's obtained to date in direct aldol reactions of glycine equivalents catalyzed by inexpensive, readily prepared chiral ammonium salts.  相似文献   

10.
Asymmetric catalysis under almost‐neutral reaction conditions is key for the efficient synthesis of optically active polar molecules. We have developed catalytic enantioselective reactions of acyclic or cyclic alkenyl esters by using an (S)‐BINOL‐derived chiral tin‐dibromide reagent that possesses a bulky aryl group at the 3 or 3′ position as the chiral pre‐catalyst in the presence of a sodium alkoxide and an alcohol, in which a chiral tin alkoxide bromide is generated in situ and recycled with the assistance of an alcohol. In this Personal Account, we describe three types of asymmetric transformation that proceed through a chiral tin enolate: 1) The asymmetric aldol reaction of alkenyl esters or unsaturated lactones with aldehydes or isatins; 2) the asymmetric three‐component Mannich‐type reaction of alkenyl esters and related cycloaddition reactions; and 3) the asymmetric N‐nitroso aldol reaction of unsaturated lactones with nitrosoarenes.  相似文献   

11.
Direct asymmetric aldol reaction of aryl ketones with aryl aldehydes catalyzed by chiral metal complex is reported for the first time herein. Two novel semicrown chiral ligands 1a and 1b were synthesized from (S)- and (R)-BINOL, respectively, and then employed to catalyze the direct asymmetric aldol addition of aryl ketones to aryl aldehydes. Introduced with 2.0 equiv of diethylzinc, 1b had higher enantioselectivity than 1a. Up to 97% yield and up to 80% enantioselectivity were achieved.  相似文献   

12.
有机磷试剂在不对称反应中的应用   总被引:1,自引:1,他引:0  
由于其结构多样性,有机磷化合物作为配体、催化剂、辅助剂、添加剂、底物以及试剂等在不对称反应中均获得了成功的应用,从而使有机磷试剂在不对称反应研究领域占有举足轻重的地位.本文全面介绍了本课题组近几年来围绕有机磷试剂在不对称反应中的应用,在醛的不对称硅氰化反应、内消旋环氧烷不对称开环反应、潜手性酮的不对称硼烷还原、不对称Friedel-Crafts烷基化、对映选择Mitsunobu、不对称aza-Morita-Baylis-Hillman、不对称aza-Henry以及硝基烯的不对称Michael加成反应等方面所取得的一些研究结果.  相似文献   

13.
[Chemical reaction: See text] Both matched and mismatched diastereoselections have been observed in the aldol reactions of a range of chiral aldehydes with the dicyclohexylboron enolate of a chiral ethyl ketone related to L-erythrulose. As was previously observed in the corresponding aldol reactions with L-erythrulose derivatives, the Felkin-Anh model provides an adequate explanation for the stereochemical outcome of reactions with chiral alpha-methyl aldehydes. However, a satisfactory account of the results observed with alpha-oxygenated aldehydes was only possible with the Cornforth model. As a practical application of the methodology described herein, a C1-C9 fragment of the structure of the antifungal macrolide soraphen A1alpha has been prepared in a convergent and stereoselective way.  相似文献   

14.
The construction of C-C bonds with complete control of the stereochemical course of a reaction is of utmost importance for organic synthesis. The aldol reaction-the simple addition of an enolate donor to a carbonyl acceptor-is one of the most powerful reactions available to the synthetic chemist. In general, control of the relative and absolute configuration of the newly formed stereogenic centers has been achieved through the use of chiral starting materials or chiral auxiliaries. In recent years the search for catalytic methods that efficiently and effectively transfer chirality information has become a major effort in synthetic organic chemistry. Two different approaches have been taken toward the catalytic asymmetric aldol reaction: biocatalysis and catalysis with small molecules. Both approaches have specific advantages and limitations, and as a result are complementary to each other. The important efforts toward both approaches are reviewed in this article.  相似文献   

15.
[Chemical reaction: See text] The asymmetric aldol reaction of a tetra-substituted ketene silyl acetal including an alkylseleno group with aldehydes has been developed by the promotion of Sn(OTf)2 coordinated with a chiral diamine to afford the corresponding aldols having chiral quaternary centers at the alpha-positions. The facile oxidative deselenization of these aldol compounds produces optically active alpha-methylene-beta-hydroxy esters which correspond to adducts prepared by the asymmetric Morita-Baylis-Hillman reaction.  相似文献   

16.
Enantioselective aldol condensation under catalytic condition remains a challenging task in modern organic synthesis, and numerous efforts have been directed to this area. In particular, the direct catalytic asymmetric aldol reaction is very attractive considering the requirement of atom efficiency. This has been studied only recently, and several very practical processes have been developed. We have recently initiated a study on the direct asymmetric aldol type reaction with ethyl diazoacetate as nucleophile. Moderate enantioselectivities (65% ~91% ee ) were achieved in the condensation of aldehydes with ethyl diazoacetate catalyzed by the chiral complex of BINOL derivatives-Zr (OBu- t )4. [1]  相似文献   

17.
The first direct organocatalytic asymmetric domino oxa-Michael/aldol condensation reaction is presented. The unprecedentedly simple, chiral, pyrrolidine-catalyzed asymmetric domino reactions between salicylic aldehyde derivatives and alpha,beta-unsaturated aldehydes proceed with high chemo- and enantioselectivities to give the corresponding chromene-3-carbaldehyde derivatives in high yields and with ee values of 83-98%.  相似文献   

18.
This article presents studies that illustrate beta-alkoxy methyl ketone-derived boron enolates undergo diastereoselective aldol addition to afford the 1,5-anti diol relationship. The stereochemical outcome of this reaction is documented to be general for a variety of beta-alkoxy methyl ketone analogues and aldehyde partners. The double stereodifferentiating reactions of these enolates with chiral beta-alkoxy aldehydes have also been investigated in conjunction with the possibility of controlling the absolute stereochemistry of the aldol process. With the proper selection of reaction conditions, the proximal alkoxy substituent on either the aldehyde (1,3-induction) or the enolate fragment (1,5-induction) can be employed to control facial selectivity of the aldol addition. Selection of a boron enolate ensures dominant 1,5-anti induction from the beta-alkoxy methyl ketone-derived enolate partner while negating any influence of the beta-alkoxy aldehyde substituent. Conversely, if stereochemical control from the beta-alkoxy aldehyde is desired, a Lewis acid-catalyzed enolsilane addition ensures dominant 1,3-induction from the aldehyde beta-oxygen substituent.  相似文献   

19.
A Cu‐catalyzed asymmetric detrifluoroacetylative aldol addition reaction of 2‐fluoro‐1,3‐diketones/hydrates to aldehydes in the presence of base and chiral bidentate ligand was developed. The reaction was carried out under convenient conditions and tolerated a wide range of substrates, resulting in fluorinated quaternary stereogenic α‐fluoro‐β‐hydroxy ketone products with good chemical yields, diastereo‐ and enantioselectivities. This catalytic asymmetric detrifluoroacetylative aldol addition reaction provides a new approach for the preparation of biologically relevant products containing C? F quaternary stereogenic centers.  相似文献   

20.
Dias LC  Aguilar AM 《Organic letters》2006,8(20):4629-4632
We have examined the double-diastereodifferentiating aldol addition reactions of chiral enolborinate 1a with chiral aldehydes leading to the corresponding aldol adducts with excellent levels of 1,5-anti diastereoselection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号