首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The adsorption of three metal ions onto bone char has been studied in both equilibrium and kinetic systems. An empirical Langmuir-type equation has been proposed to correlate the experimental equilibrium data for multicomponent systems. The sorption equilibrium of three metal ions, namely, cadmium (II) ion, zinc (II) ion and copper (II) ion in the three binary and one ternary systems is well correlated by the Langmuir-type equation. For the batch kinetic studies, a multicomponent film-pore diffusion model was developed by incorporating this empirical Langmuir-type equation into a single component film-pore diffusion model and was used to correlate the multicomponent batch kinetic data. The multicomponent film-pore diffusion model shows some deviation from the experimental data for the sorption of cadmium ions in Cd-Cu, Cd-Zn and Cd-Cu-Zn systems. However, overall this model gives a good correlation of the experimental data for three binary and one ternary systems.  相似文献   

2.
Batch experiments were carried out for the sorption of methylene blue onto rice husk particles. The operating variables studied were initial solution pH, initial dye concentration, adsorbent concentration, and contact time. Equilibrium data were fitted to the Freundlich and Langmuir isotherm equations and the equilibrium data were found to be well represented by the Langmuir isotherm equation. The monolayer sorption capacity of rice husks for methylene blue sorption was found to be 40.5833 mg/g at room temperature (32 degrees C). The sorption was analyzed using pseudo-first-order and pseudo-second-order kinetic models and the sorption kinetics was found to follow a pseudo-second-order kinetic model. Also the applicability of pseudo second order in modeling the kinetic data was also discussed. The sorption process was found to be controlled by both surface and pore diffusion with surface diffusion at the earlier stages followed by pore diffusion at the later stages. The average external mass transfer coefficient and intraparticle diffusion coefficient was found to be 0.01133 min(-1) and 0.695358 mg/g min0.5. Analysis of sorption data using a Boyd plot confirms that external mass transfer is the rate limiting step in the sorption process. The effective diffusion coefficient, Di was calculated using the Boyd constant and was found to be 5.05 x 10(-04) cm2/s for an initial dye concentration of 50 mg/L. A single-stage batch-adsorber design of the adsorption of methylene blue onto rice husk has been studied based on the Langmuir isotherm equation.  相似文献   

3.
Batch sorption experiments were carried out to remove methylene blue from its aqueous solutions using fly ash as an adsorbent. Operating variables studied were initial dye concentration, fly ash mass, pH, and contact time. Maximum color removal was observed at a basic pH of 8. Equilibrium data were represented well by a Langmuir isotherm equation with a monolayer sorption capacity of 5.718 mg/g. Sorption data were fitted to both Lagergren first-order and pseudo-second-order kinetic models and the data were found to follow pseudo-second-order kinetics. Rate constants at different initial concentrations were estimated. The process mechanism was found to be complex, consisting of both surface adsorption and pore diffusion. The effective diffusion parameter D(i) values were estimated at different initial concentrations and the average value was determined to be 2.063 x 10(-9)cm2/s. Analysis of sorption data using a Boyd plot confirms the particle diffusion as the rate-limiting step for the dye concentration ranges studied in the present investigation (20 to 60 mg/L).  相似文献   

4.
The sorption of three metal ions, namely, copper, cadmium, and zinc, onto bone char has been studied in terms of equilibrium and rate studies. Equilibrium studies have been analyzed using the Langmuir isotherm equation and the maximum sorption capacities for the metals were 0.477, 0.709, and 0.505 mmolg(-1) bone char for cadmium, copper, and zinc ions, respectively. The kinetic experimental data were used to analyze the effect of external film boundary layer and intraparticle mass transfer resistance on the sorption process and its significance. Four methods of determining the external film transport coefficient were developed and tested; three utilized experimental data to obtain the coefficient and the fourth method was completely empirical. The three experimentally based models give very similar results and consequently similar values of the deviation error values, whereas the error values for the empirical correlation were greater than these three values. The results also demonstrated that the methods for determining the film coefficient could be integrated into more complex diffusion-transport models such as film-intraparticle diffusion processes.  相似文献   

5.
The sorption of acid dyes from aqueous effluents onto activated carbon has been studied. The effects of initial dye concentration and activated carbon mass on the rate of Acid Blue 80, Acid Red 114 and Acid Yellow 117 removal have been investigated. A three-resistance mass transport model based on film, pore and surface diffusion control has been applied to model the concentration decay curves. The model incorporates an effective diffusion coefficient D eff, which is dependant on the equilibrium solid phase concentration or fractional surface coverage. The results of the film-pore-surface diffusion model are compared with the data obtained from the basic film-pore diffusion model. It has been found that the film-pore-surface diffusion model provides a major improvement over the data correlated by the film-pore diffusion model. Also, the relationship between surface diffusion and fractional surface coverage has been investigated for the adsorption of acid dyes on activated carbon.  相似文献   

6.
The sorption of acid dyes from aqueous effluents onto activated carbon has been studied. The effects of initial dye concentration and activated carbon mass on the rate of Acid Blue 80, Acid Red 114 and Acid Yellow 117 removal have been investigated. A three-resistance mass transport model based on film, pore and surface diffusion control has been applied to model the concentration decay curves. The model incorporates an effective diffusion coefficient D eff, which is dependant on the equilibrium solid phase concentration or fractional surface coverage. The results of the film-pore-surface diffusion model are compared with the data obtained from the basic film-pore diffusion model. It has been found that the film-pore-surface diffusion model provides a major improvement over the data correlated by the film-pore diffusion model. Also, the relationship between surface diffusion and fractional surface coverage has been investigated for the adsorption of acid dyes on activated carbon.  相似文献   

7.
The kinetics of the sorption of aromatic amines such as o-aminophenol (o-AP), o-phenylenediamine (o-PDA), and p-phenylenediamine (p-PDA) onto Amberlite anion-exchange resin in chloride form was investigated in batch experiments spectrophotometrically at different temperatures. The sorption rate is zero order in all amines sorbed, increasing directly in the order: p-PDA相似文献   

8.

From this study it was evident that outer peristaltic parts of waste tire granules gave the highest removal. Film and pore diffusions are the major factors controlling rates of sorption from solution by porous adsorbents. For sorption of 2,4‐D on waste tire rubber granules, the sorption rate coefficient of second‐order kinetic equation was utilized indirectly to determine the rate‐limiting step. The diffusion coefficient lies in the scale of 10?8 cm2/s, and the pore diffusion coefficient is in the range of 10?9–10?10 cm2/s. So both film and pore diffusion are rate limiting. Considering external mass transfer from fluid to particle, using the effect of initial concentration, and using the effect of adsorbent size, no conclusion was reached regarding rate‐controlling steps. It is apparent from the study that external mass transfer (film diffusion) as well as intra‐particle diffusion (pore diffusion) play significant roles in the sorption process for 2,4‐D removal from water onto rubber granules.  相似文献   

9.
A simple and reliable method has been developed using polymeric material containing phthalic acid as a chelating agent to concentrate ultratrace amounts of lead ions in aqueous solutions. After characterization by CHN, IR, and thermal studies, the static and dynamic sorption behavior of Pb(II) ions onto new synthetic resin has been investigated. The sorption has been optimized with respect to pH, shaking speed, and contact time between the two phases. Maximum sorption is achieved from solution of pH 5-8 after 10 min agitation time. The lowest concentration for quantitative recovery is 5.8 ng cm(-3) with a preconcentration factor of approximately 850. The kinetics of sorption follows the first-order rate equation with the rate constant k=0.58+/-0.04 min(-1). The variation of the equilibrium constant K(c) with temperature between 10 and 50 degrees C yields values of DeltaH, 52.4+/-1.65 kJmol(-1), DeltaS, 186+/-5.21 Jmol(-1)K(-1), and DeltaG(303K), -4.15+/-0.002 kJmol(-1). The sorption data of Pb(II) ions in the concentration range from 2.41x10(-6) to 1.44x10(-4) molL(-1) follows the Langmuir, Freundlich, and Dubinin-Radushkevich (D-R) isotherms at all temperatures investigated. The sorption of Pb(II) ions onto synthesized resin in the presence of common anions and cations has also been measured. The possible sorption mechanism of Pb(II) ions onto phthalic acid modified XAD-16 is also discussed. The sorption procedure is utilized to preconcentrate Pb(II) ions prior to their determination in automobile exhaust particulates by atomic absorption spectrometry using direct and standard addition methods.  相似文献   

10.
Hasany SM  Saeed MM  Ahmed M 《Talanta》2001,54(1):89-98
The sorption of traces of silver ions onto polyurethane foam (PUF) has been investigated in detail. Maximum sorption of silver (K(d)=6109 cm(3) g(-1), %sorption>97.5%) has been achieved from 1 M nitric acid solution after equilibrating silver ions with approximately 29 mg PUF for 20 min. The kinetics and thermodynamics of the sorption of silver ions onto PUF have also been studied. The sorption of silver ions onto PUF follows a first-order rate equation, which results as 0.177 min(-1). The variation of sorption with temperature yields the values of DeltaH=-56.1+/-3.2 kJ mol(-1), DeltaS=-159.7+/-10.5 J mol(-1) K(-1) and DeltaG=-8.68+/-0.09 kJ mol(-1) at 298 K with a correlation factor gamma=0.9919. The sorption data were subjected to different sorption isotherms. The sorption follows Langmuir, Freundlich and Dubinin-Radushkevich (D-R) isotherms. The values of Langmuir isotherms Q=65.4+/-1.5 mumol g(-1) and b=(4.79+/-1.16)x10(4) dm(3) mol(-1) have been evaluated for Langmuir sorption constants, whereas the Freundlich sorption isotherm gives the value 1/n=0.12+/-0.02 and A=0.15+/-0.03 mmol g(-1). The D-R parameters computed were beta=-0.000817+/-0.000206 mol(2) kJ(-2), X(m)=76.8+/-8.7 mumol g(-1) and E=24.7+/-3.2 kJ mol(-1). The influence of common ions on the sorption was also examined. It is observed that Hg(II), thiourea, Al(III), thiocyanate and thiosulphate reduce the sorption, whereas Cu(II), citrate and acetate ions enhance the sorption significantly. It can be concluded that PUF may be used to remove traces of silver ions from its very dilute solutions or for its preconcentration from aqueous acidic solutions.  相似文献   

11.
The adsorption equilibrium and kinetics of single and binary component copper ions and phenol onto powdered activated carbon (PAC), alginate beads and alginate-activated carbon beads (AAC) were studied. Adsorption equilibrium data for single component copper ions and phenol onto the adsorbents could be represented by the Langmuir equation. Multicomponent equilibrium data were correlated by the extended Langmuir and ideal adsorbed solution theory (IAST). The IAST gave the best fit to our data. The amount of copper ions adsorbed onto the AAC beads in the binary component was greater than that of phenol. The internal diffusion coefficients were determined by comparing the experimental concentration curves with those predicted from surface diffusion and pore diffusion model.  相似文献   

12.
Hydrous Fe and Mn oxides (HFO and HMO) are important sinks for heavy metals and Pb(II) is one of the more prevalent metal contaminants in the environment. In this work, Pb(II) sorption to HFO (Fe(2)O(3) x nH(2)O, n=1-3) and HMO (MnO(2)) surfaces has been studied with EXAFS: mononuclear bidentate surface complexes were observed on FeO(6) (MnO(6)) octahedra with PbO distance of 2.25-2.35 Angstrom and PbFe(Mn) distances of 3.29-3.36 (3.65-3.76) Angstrom. These surface complexes were invariant of pH 5 and 6, ionic strength 2.8 x 10(-3) to 1.5 x 10(-2), loading 2.03 x 10(-4) to 9.1 x 10(-3) mol Pb/g, and reaction time up to 21 months. EXAFS data at the Fe K-edge revealed that freshly precipitated HFO exhibits short-range order; the sorbed Pb(II) ions do not substitute for Fe but may inhibit crystallization of HFO. Pb(II) sorbed to HFO through a rapid initial uptake ( approximately 77%) followed by a slow intraparticle diffusion step ( approximately 23%) resulting in a surface diffusivity of 2.5 x 10(-15) cm(2)/s. Results from this study suggest that mechanistic investigations provide a solid basis for successful adsorption modeling and that inclusion of intraparticle surface diffusion may lead to improved geochemical transport depiction.  相似文献   

13.
Transport phenomenon of three sulfonated azo dyes, C.I. Acid Red 88, C.I. Direct Yellow 12, and C.I. Direct Blue 15 into water-swollen cellulose membranes has been analyzed on the basis of parallel transport theory by surface and pore diffusion. Langmuir equation was applied into the mass balance equation to estimate dye concentration in the pores. The results were compared with the results obtained by applying Freundlich equation in our previous papers. The surface diffusivity (D s) and the pore diffusivity (D p) for the parallel diffusion model obtained by applying Langmuir equation agreed with those obtained by applying Freudlich equation. The theoretical concentration profiles for parallel diffusion calculated usingD s andD p coincided accurately with the experimental data when we applied either Langmuir or Freundlich equations.  相似文献   

14.
Oxidized nitrogen-doped multiwall carbon nanotubes (ox-N-MWCNTs), oxidized multiwall carbon nanotubes (ox-MWCNTs), and oxidized single-wall carbon nanotubes (ox-SWCNTs) were evaluated via batch adsorption kinetic experiments to determine the effect of nanotube morphology on the adsorption rate of cadmium. The nanotubes were characterized by HRTEM, XRD and Raman spectroscopy. Cadmium adsorption isotherms were determined at pH 6. Analyses of the kinetic data with an external mass transport model and an intraparticle diffusion model considered two cases: (1) single nanotubes suspended in aqueous solution and (2) agglomerates of nanotubes suspended in aqueous solution. The intraparticle diffusion model produced the best fit to the experimental data. However, only the diffusivity coefficients for single nanotubes suspended in solution were similar to literature values: about 4×10(-9), 1×10(-9) and 2.4×10(-11) cm(2)/s for ox-N-MWCNTs, ox-MWCNTs and ox-SWCNTs, respectively. The morphology of the various carbon nanotubes might determine cadmium diffusivity. The high amount of sidewall pores observed in the single-walled carbon nanotubes could limit cadmium diffusion and account for the slow diffusion rate of 180 min. Conversely, the short length, small surface area and bamboo-type morphology observed with nitrogen-doped multiwall carbon nanotubes may account for the relatively fast adsorption rate of 15 min as this morphology prevents cadmium diffusion through the internal tubular space of these nanotubes.  相似文献   

15.
Amorphous hydrous manganese oxide (HMO) is an important mineral in soils and sediments influencing the mobility and bioavailability of metal contaminants. In this study, nickel and lead sorption to discrete HMO and HMO-coated montmorillonite was investigated mechanistically. The effect of pH and concentration revealed that when normalized to the mass of oxide present, the HMO-coated montmorillonite behaved similarly to the discrete Mn oxide, where both ions sorbed onto HMO-coated montmorillonite as inner-sphere complexes. Ni coordinated to the vacancy sites in the Mn oxide structure, while Pb formed bidentate corner-sharing complexes. These coordination environments were observed not only as a function of loading, pH, and ionic strength, but also in long-term studies where sorption increased by as much as 100% (from 6x10(-4) to 1.2x10(-3) mol Ni/g HMO-coated montmorillonite). In this slower sorption process, intraparticle diffusion, the internal surface sites along microporous walls appear to be no different than external ones. Best fit diffusivities ranged from 10(-12) to 10(-13) cm2/s for Ni and 10(-17) to 10(-20) cm2/s for Pb. The significant difference in the diffusivities for the two ions is consistent with site activation theory, where theoretical surface diffusivities were predicted and given their error were in agreement with experimental results. Mn oxides sequester heavy metals in the environment.  相似文献   

16.
The removal of heavy metals, such as Cu(II), Cd(II) and Cr(III) from aqueous solution was studied using Chorfa silt material (Mascara, Algeria). The main constituents of silt sediment are quartz, calcite and mixture of clays. The experimental data were described using Freundlich, Langmuir, Dubinin–Radushkevich (D–R) and Langmuir–Freundlich models. The adsorbed amounts of chromium and copper ions were very high (95% and 94% of the total concentration of the metal ions), whereas cadmium ion was adsorbed in smaller (55%) amounts. The Langmuir–Freundlich isotherm model was the best to describe the experimental data. The maximum sorption capacity was found to be 26.30, 11.76 and 0.35 mg/g for Cr3+, Cu2+ and Cd2+, respectively. The results of mean sorption energy, E (kJ/mol) calculated from D–R equation, confirmed that the adsorption of copper, chromium and cadmium on silt is physical in nature.  相似文献   

17.
The equilibrium and kinetics of levulinic acid (LA) adsorption on two basic polymeric adsorbents, 335 (highly porous gel) and D315 (macroreticular), were investigated. Experimental adsorption rates in batch stirred vessels under a variety of operating conditions were described successfully by the parallel pore and surface diffusion model taking into account external mass transfer and nonlinear Toth isotherm. The film-pore diffusion model was matched with the rate data and the resulting apparent pore diffusivities were strongly concentration-dependent and approached to a constant value for 335 adsorbent. Thus, the constant value was taken as the accurate pore diffusivity, while the pore diffusivity in D315 was estimated from the particle porosity. The surface diffusivities decreased with increasing initial bulk concentration for both adsorbents. The inverse concentration dependence was correlated reasonably well to the change of isosteric heat of adsorption as amount adsorbed.  相似文献   

18.
The influences of mass transfer and adsorption-desorption kinetics on the binding of staphylococcal enterotoxin B (SEB) to an affinity resin with the peptide ligand, Tyr-Tyr-Trp-Leu-His-His (YYWLHH) have been studied. The bed and particle porosities, the axial dispersion coefficient and the pore diffusivity were measured using pulse experiments under unretained conditions. Adsorption isotherms for SEB on YYWLHH resins with peptide densities in the range from 6 to 220 micromol/g were measured and fitted to a bi-Langmuir equation. At peptide densities below 9 micromol/g and above 50 micromol/g, dissociation constants were lower (2 x 10(-3) to 7 x 10(-3) mol/m3), and binding capacities were larger (43-47 mg SEB/g). In the range from 9 to 50 micromol/g dissociation constants were larger (13 x 10(-3) to 24 x 10(-3) mol/m3) and capacities were lower (33-37 mg SEB/g). These observations are consistent with a transition from single point attachment of the protein to the ligand at low peptide densities to multipoint attachment at high peptide densities. The general rate (GR) model of chromatography was used to fit experimental breakthrough curves under retained conditions to determine the intrinsic rate constants for adsorption, which varied from 0.13 to 0.50 m3 mol(-1) s(-1), and exhibited no clear trend with increasing peptide density. An analysis of the number of transfer units for the various mass transfer steps in the column indicated that film mass transfer, pore diffusion (POR) and the kinetics of adsorption can all play an important role in the overall rate of adsorption, with the intrinsic adsorption step apparently being the rate determining step at peptide densities below 50 micromol/g.  相似文献   

19.
20.
In this paper, we have developed an accurate and efficient Haar wavelet method to solve film-pore diffusion model. Film-pore diffusion model is widely used to determine study the kinetics of adsorption systems. To the best of our knowledge, until now rigorous wavelet solution has been not reported for solving film-pore diffusion model. The use of Haar wavelets is found to be accurate, simple, fast, flexible, convenient, and computationally attractive. The power of the manageable method is confirmed. It is shown that film-pore diffusion model satisfactorily describes the kinetics of methylene blue adsorption onto three low-cost adsorbents, Gauva, teak and gulmohar plant leaf powders, used in this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号