首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A method of determining the permanent dipole moment of polar compounds in the excited S1 state by the dependence of the rate of radiationless conversion of the energy of this state on the polarity of the solvent (medium) is proposed. The method was used for determining the dipole moment µe of hydrogen-bonded complexes formed by 4-amino-, 4-methylamino-, and 4-dimethylamino-N-methylphthalimides (4AMP, 4MAMP, and 4DMAMP) in proton-donor solvents. It has been established that µe = 11.68 D for 4AMP in alcohols, µe = 11.84 D for 4MAMP in alcohols, and µe = 13.19 D for 4DMAMP in alcohols and water.__________Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 72, No. 2, pp. 186–191, March–April, 2005.  相似文献   

2.
Photoinduced interaction of mercapto propionic acid (MPA) capped CdTe quantum dots (QDs) with certain anthraquinone dyes namely alizarin, alizarin red S, acid blue 129 and uniblue has been studied by steady state and time resolved fluorescence measurements. Addition of anthraquinone dyes to CdTe QDs results in the reduction of electron hole recombination has been observed (i.e., fluorescence quenching). The Stern-Volmer constant (KSV), quenching rate constant (kq) and association constants (K) were obtained from fluorescence quenching data. The interaction of anthraquinone dyes with QDs occurs through static quenching was confirmed by unaltered fluorescence lifetime. The occurrence of electron transfer quenching mechanism has been proved by the negative free energy change (ΔGet) obtained as per the Rehm-Weller equation.  相似文献   

3.
The fluorescence quenching of 2,3-diazabicyclo[2.2.2]oct-2-ene (DBO) by a series of uracils has been studied in water and acetonitrile solvents using steady-state and time-resolved fluorescence techniques. The steady-state fluorescence quenching technique has been performed in three different pHs (i.e. 4, 8 and 12). The bimolecular quenching rate constant (kq) increases with increase in pH of uracils. In acidic pH, a pure hydrogen atom abstraction is proposed as the quenching mechanism. This is supported by a pronounced solvent deuterium isotope effect. Electron transfer from the anionic form of uracil to the excited state of DBO is proposed as a mechanism for quenching in basic pH on the basis of highly exergonic thermodynamics obtained from the Rehm-Weller equation. The variation of kq is explained on the basis of the electronic effect of substitution in uracils as well.  相似文献   

4.
The quenching of 2,5-diphenyloxazole (PPO) fluorescence by nucleotides has been investigated by electronic absorption and steady state fluorescence spectra. Five purine nucleotides AMP, ADP, ATP, GMP and dGMP, one pyrimidine nucleotide UMP and one dinucleotide NAD have been employed in the present study. Electronic absorption studies indicate that there is no ground state complexation between the nucleotides and PPO. The quenching of PPO fluorescence was investigated at two different wavelengths. When excited at 304 nm, the λ max of PPO, the fluorescence spectra of PPO is quenched following Stern–Volmer kinetics. The quenching ability of nucleotides are in the order NAD > AMP > ADP > GMP > dGMP > UMP. The K SV and k q values obtained indicate that AMP is a better quencher of PPO fluorescence than GMP, which is contrary to commonly observed pattern. The quenching is found to be dynamic in nature. However, when excited at 260 nm, the absorption maximum of the nucleotides, the fluorescence intensity of PPO is reduced with increase in the concentration of the nucleotide. This is attributed to the primary inner filter effect arising due to the absorption of the incident radiation by the nucleotides. Thus the inner filter effect phenomenon can be employed to assay the non-fluorescent molecules by fluorimetry.  相似文献   

5.
We measure the fluorescence quantum yields (q fl) of complexes of Al, Sc, Y, In, Lu, and Gd with dibenzoylmethane in aqueous and isopropanol solutions at different concentration ratios of ions and dike-tone. We reveal that, for the examined solutions, qfl of complexes varies more than by two orders of magnitude under the influence of the heavy atom. It is found that a considerable decrease in q fl and τfl of ligands of complexes of listed ions caused by the influence of heavy atoms weakly affects the intensity of sensitized fluorescence of Nile red and rhodamine 6G molecules introduced into nanoparticles from these complexes in aqueous solutions. The revealed result is explained by the comparability of the singlet exciton free path length and the dimension of nanoparticles under study. We show that a lower fluorescence intensity of heavy metal complexes makes it possible to decrease its contribution in the range of the cofluorescence maximum of rhodamine 6G and to monitor the occurrence of the dye in the aqueous solution down to the concentration of 0.05 nM. We show that, in nanoparticles from Eu complexes, further fluorescence quenching of dibenzoylmethane is observed, as well as the appearance of cofluorescence of rhodamine 6G, the intensity of which is comparable with its intensity in nanoparticles of other complexes. The appearance of this cofluorescence cannot be explained by the existence of S-S energy migration.  相似文献   

6.
The work of Lakowicz and Weber [Biochemistry 12, 4161 (1973)] demonstrated that molecular oxygen is a powerful quencher of tryptophan fluorescence in proteins. Here we report studies of the oxygen quenching of several proteins that have a single, internal tryptophan residue. Among these are apoazurin (Pseudomonas aeruginosa), asparaginase (Escherichia coli), ribonuclease T1 (Aspergillus oryzae), and cod parvalbumin. Both fluorescence intensity and phase lifetime quenching data are reported. By comparison of these data we find that there is a significant degree of apparent static quenching in these proteins. The dynamic quenching rate constants,k q, that we find are low compared to those for tryptophan residues in other proteins. For example, for apoazurin we find an apparentk q of 0.59×109 M –1 s–1 at 25°C. This value is the lowest that has been reported for the oxygen quenching of tryptophan fluorescence.  相似文献   

7.
The influence of temperature on the rate constants of photoinduced intermolecular electron transfer, representing the first stage of photoinduced reactions, has been investigated based on analysis of the quenching of fluorescence of carbazole vapor by halomethanes (CHCl3, CH2Br2, CCl4, CHBr3) and delayed fluorescence of benzophenone and anthraquinone vapors by aliphatic amines (diethylamine, dibutylamine, cyclohexylamine, triethylamine) and pyridine. It has been established that the rate constants of photoinduced electron transfer in different donor-acceptor pairs in the gas phase can increase or decrease with increase in the temperature from 433 to 623 K. The energies of activation and enthalpy of the fluorescence-quenching process have been determined. The interrelation between the rate constants of fluorescence quenching k q and the free energy of electron transfer G ET has been analyzed with account for the mean vibrational energy <E vib> of the interacting molecules. It is shown that positive and negative temperature dependences k q(T) are characteristic, respectively, of the regions of normal (k ET increases with decrease in G ET) and inverted (k ET decreases with decrease in G ET) changes in the rate constants caused by an increase in the exothermicity of the photoinduced electron transfer process.  相似文献   

8.
The reaction of phenols with the excited state, *[Ru(bpy)3]2+ (E0 = 0.76 V) and *[Ru(H2dcbpy)3]2+, (dcbpy = 4,4′‐dicarboxy‐2,2′‐bipyridine) (E0 = 1.55 V vs. SCE) complexes in CH3CN has been studied by luminescence quenching technique and the quenching is dynamic. The formation of phenoxyl radical as a transient is confirmed by its characteristic absorption at 400 nm. The kq value is highly sensitive to the change of pH of the medium and ΔG0 of the reaction. Based on the treatment of kq data in terms of energetics of the reaction and pH of the medium, proton coupled electron transfer (PCET) mechanism has been proposed for the reaction. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
The fluorescence quenching of pyronin B and pyronin Y molecules by molecular oxygen in aqueous solution was studied by using steady-state and time-resolved fluorescence and UV-Vis absorption spectroscopy techniques. In order to understand the quenching mechanism, fluorescence decays, absorption and fluorescence spectra of the probes were recorded as a function of the oxygen concentration and temperature. The quenching was found to be appreciable and shows positive deviation in the Stern-Volmer representation obtained from the fluorescence intensity ratio. Fluorescence quenching constants (kq) were calculated from the τo/τ vs. [Q] plots having linear correlation and compared with calculated diffusion-controlled rate constants (kdiff) values. Experimental results were in good agreement with the simultaneous dynamic and static quenching model.  相似文献   

10.
Oxygen quenching of excited triplet and singlet states of gas-phase anthracene and its derivatives that have similar energies of the lower triplet levels but widely different oxidation potentials (0.44 < Eox < 1.89 V) was studied. Quenching rate constants for singlet (kSO2) and triplet (kTO2) states in addition to the fraction of oxygen-quenched singlet and triplet states qS 1(T1O2 were determined from the decay rates, fluorescence intensities, and delayed fluorescence as functions of oxygen pressure. It was found that kSO2 values vary from 2·104 (9,10-dicyanoanthracene) to 1.2·107 sec−1·torr−1 (anthracene, 9-methylanthracene, 2-aminoanthracene) and kSO2 values from 5·102 to 1·105 sec−1·torr−1. The kSO2 values for anthracene, 9-methylanthracene, and 2-aminoanthracene, which have fast rates of interconversion from S1 to T1, are close to the rate constants for gas-kinetic collisions and are independent of the oxidation potentials (Eox). The quenching rate constants kSO2 for the other anthracene derivatives and kTO2 for all studied compounds decrease with increasing free energy of electron transfer ΔGET, which indicates the important role of charge-transfer interactions in the oxygen quenching of singlet S1- and triplet T1 states. __________ Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 75, No. 1, pp. 36–42, January–February, 2008.  相似文献   

11.
The proton-transfer reaction of 1,8-diaminonaphthalene (1,8-DAN) in acidic medium was studied by means of fluorescence and picosecond spectroscopic techniques. It has been found that there are three different forms of 1,8-DAN in the ground state, but only two different forms in the excited state. The absorption of the mono-cation form of 1,8-DAN is found to be a mixture of the neutral form and the di-cation form. However, the emission is found to be the same as the neutral form, due to the fast dissociation of the mono-cation form once it is excited. The fluorescence of the mono-cation form of 1,8-DAN shows a small shift under different excitation wavelengths. The di-cation form only fluoresces if no free water cluster is available as a proton acceptor. The reaction in the excited state is shown to be a diabatic quenching reaction. With the help of quantum yields and fluorescence lifetime measurements these results are interpreted in terms of a new photochemical scheme. All dissociation and quenching rate constants, pKa and kq, have been determined.  相似文献   

12.
The intermolecular photoinduced reactions between triplet ketone molecules and aliphatic amines and pyridine are studied by the quenching of delayed fluorescence of anthraquinone and benzophenone vapors by diethylamine, dibutylamine, cyclohexylamine, triethylamine, and pyridine. In the temperature range 423–573 K, the delayed fluorescence quenching rate constants k q are estimated from changes in the decay rate constant and the intensity of delayed fluorescence upon increasing pressure of bath gases. It is ascertained that, in the gas phase, the mixtures under study exhibit both a negative and a positive dependence of k q on temperature, which indicates that some photoinduced reactions do not have activation barriers. The rate constant k q is shown to increase with decreasing ionization potential of the electron donors. This points to the importance of interactions with charge transfer in the photoreaction of triplet ketone molecules with aliphatic amines and pyridine in the gas phase. The relationship between k q and the change in the free energy ΔG upon the photoinduced intermolecular electron transfer, which is the primary stage of the photochemical reaction, is studied. It is shown that the dependence k q G) for the donor-acceptor pairs under study is described well by the Marcus equation, in which the average vibrational energies of the donor and acceptor are taken into account for the estimate of ΔG.  相似文献   

13.
Excited singlet (S 1) and triplet (T 1) state quenching by O2 and by (O2 + H2O) gas-vapor mixtures was studied in the gas phase for polycyclic aromatic hydrocarbons (PAHs, anthracene, 2-aminoanthracene, pyrene). Addition of water vapor is shown not to influence quenching of both fluorescence and delayed fluorescence of PAHs by oxygen. The role of complexes stabilized by charge transfer and hydrogen bonds in quenching the excited states of PAHs by atmospheric gases was analyzed. Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 76, No. 3, pp. 342–348, May–June, 2009.  相似文献   

14.
Based on studies of spectral and kinetic parameters of dimers of Zn porphyrins and of multiporphyrin self-assembling complexes formed on their basis, we find that extra liganding of dimers by pyridine inappreciably lowers the energy of the triplet level E(T 1). We show that, in this case, the nonradiative deactivation T 1S 0 of the electronic excitation energy of dimers Zn porphyrins increases not only due to increasing Franck-Condon factor. We discuss mechanisms of the quenching action of an extra ligand related to an accepting role played by high-frequency overtones of vibrations of extra ligand molecules, to an enhancement of the spin-orbit interaction due to energy lowering of σπ* states, and to out-of-plane distortion of dimers caused by the displacement of the Zn2+ ion out of the plane of the tetrapyrrole macrocycle. Quenching of triplet states of extra liganded dimers of Zn porphyrins by molecular oxygen in liquid solutions at 295 K depends on the character of donor-acceptor interactions with pyridine and rigidity of a linking molecular fragment. We find that the rate constants of oxygen quenching of the excited electronic states S 1 and T 1 of multiporphyrin complexes depend on their structure and composition, as well as steric hindrances, created by dimers (screening effects) for contact interactions of a π-conjugated system of the free base (extra ligand) with molecular oxygen. Screening effects of extra ligands by dimer molecules of Zn porphyrins, which reduce the oxygen quenching rate constants k S and k T , are found to barely affect the singlet-oxygen generation quantum yield γΔ.  相似文献   

15.
The steady-state absorption and fluorescence, as well as the time-resolved fluorescence properties of bisdemethoxycurcumin dissolved in several solvents differing in polarity and H-bonding capability were measured. The photodegradation quantum yield of the compound in acetonitrile and methanol was determined. The bisdemethoxycurcumin decay mechanisms from the S 1 state were discussed and compared with those of curcumin. The differences in S 1 dynamics observed between bisdemethoxy-curcumin and curcumin could be ascribed to a difference in H-bond acceptor/donor properties of the phenolic OH and a difference in strength of the intramolecular H-bond in the keto-enol moiety within the two molecules.  相似文献   

16.
The fluorescence quenching of coumarin derivative, 4-(5-chloro-3-furan-2-yl-benzofuran-2-yl)-6-methyl-2H-chromen-2-one (ClFBMC), in the presence of aniline in different proportion of benzene-acetonitrile mixture was studied by means of steady-state measurement (296 K). The quenching process was characterized by Stern-Volmer (S-V) plots, which display positive (upward) deviation. The positive deviation from linearity suggests that the quenching is due to the simultaneous presence of dynamic and static quenching, which is interpreted in terms of the ground-state complex formation and the sphere of action static quenching model. The sphere of action static quenching model agrees very well with experimental results. Further with the use of finite sink approximation model, it is concluded that the bimolecular quenching reactions are diffusion-limited. Various rate parameters for the fluorescence quenching process have been determined. The value of quenching constant kq increases with increase in dielectric constant of the mixed solvent, suggesting the charge transfer character of the excited complex.  相似文献   

17.
The third harmonic (355 nm) of a pulsed, Nd-YAG laser has been used to induce pyrene fluorescence in cyclohexane solution. The rate constants of fluorescence quenching of pyrene by alkyl and aryl bromides have been measured. The increase of kq with increasing the electron affinity of the quencher is attributed to CT interactions between the fluorophore and the heavy atom quencher involving a CT encounter complex, in which the quencher acts as an electron acceptor.  相似文献   

18.
The energy transfer from the S 1 levels of p-phenylbenzoyltrifluoroacetone (PhBTA) and dyes to different Ln3+ ions is studied in nanoparticles (NPs) composed of complexes of this diketone with Ln3+ and 1,10-phenanthroline (phen) and doped with dye molecules. The quenching rate constants in the NPs consisting from complexes of Pr3+, Nd3+, Sm3+, Eu3+, Ho3+, Er3+, and Tm3+ are determined from the data on the quenching of sensitized (cofluorescence) and ordinary fluorescence of coumarin 30 (C30) and rhodamine 6G (R6G). The quenching rate constants vary from ≤5 × 1011 to 1013 s?1 for the fluorescence quenching of PhBTA by different Ln3+ ions, while the quenching of dye fluorescence occurs at rates of the order of 109 s?1. In the case of complexes with the Pr3+ ions, the fluorescence quenching of PhBTA in NPs composed of its complexes is accompanied by sensitized luminescence of Pr3+. The quenching observed is due to a nonradiative energy transfer from the S 1 states of ligands and dyes to these ions. It is shown that in NPs composed of complexes with Eu3+, Yb3+, and Sm3+ the cofluorescence of C30 is quenched via the electron-transfer mechanism. The study of quenching of cofluorescence and fluorescence of dyes in NPs composed of mixed complexes of La3+ and Nd3+ (Ho3+) shows that the observed quenching of fluorescence and cofluorescence is governed mainly by the quenching of the S 1 state of dyes when the Nd3+ (Ho3+) content does not exceed 5–10% and by the quenching of the S 1 state of a ligand when the Nd3+ (Ho3+) content exceeds 50%. It is assumed that the high rate constant of energy transfer from the S 1 level of ligands to ions Pr3+, Nd3+, Ho3+, Er3+, and Tm3+ in NPs composed of beta-diketonate complexes is caused by exchange interactions.  相似文献   

19.
Energy level diagrams of 2-amino-4-methylphenol and its complexes with water are calculated by the method of intermediate neglect of differential overlap (INDO). It is demonstrated that the substitution by the amino group results in the dependence of the quantum fluorescence yield on the excitation energy. The decrease of the quantum fluorescence yield of 2-amino-4-methylphenol in going from hexane to water is explained. Complexing of the 2-amino-4-methylphenol molecule with water with the formation of the H-bond reduces the quantum fluorescence yield compared to the isolated molecule due to the increased efficiency of the S1 → T4 conversion.__________Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 3, pp. 71–76, March, 2005.  相似文献   

20.
Intermolecular photoinduced electron transfer (PET) in a gas phase was studied using carbazole vapor fluorescence quenching by halomethanes (CHCl3, CH2Br2, CCl4, CHBr3). The fluorescence quenching rate constants k q changing from 2.3·105 sec–1·torr–1 in mixtures with CHCl3 to 4.6·106 sec–1·torr–1 in mixtures with CHBr3 at a constant temperature of 403 K were estimated. The dependence of the carbazole fluorescence decay rates in the presence of halomethanes on the free energy change G during transfer of the electron from carbazole to halomethanes is considered. It is suggested to take into account the influence of the vibrational energy of the carbazole molecule E vib and its temperature changes in estimation of the G values. The differences between PET in the gas and liquid phases were analyzed. It is found that for mixtures with CCl4 and CHBr3 the negative temperature dependence of k q is observed, when the decay rates and efficiencies of the intermolecular PET decreased with temperature increase in the range 403–573 K, i.e. these mixtures the electron transfer is not a barrier-restricted process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号