首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
We study the coordinated scheduling problem of hybrid batch production on a single batching machine and two-stage transportation connecting the production, where there is a crane available in the first-stage transportation that transports jobs from the warehouse to the machine and there is a vehicle available in the second-stage transportation to deliver jobs from the machine to the customer. As the job to be carried out is big and heavy in the steel industry, it is reasonable assumed that both the crane and the vehicle have unit capacity. The batching machine processes a batch of jobs simultaneously. Each batch occur a setup cost. The objective is to minimize the sum of the makespan and the total setup cost. We prove that this problem is strongly NP-hard. A polynomial time algorithm is proposed for a case where the job transportation times are identical on the crane or the vehicle. An efficient heuristic algorithm for the general problem is constructed and its tight worst-case bound is analyzed. In order to further verify the performance of the proposed heuristics, we develop a lower bound on the optimal objective function. Computational experiments show that the heuristic algorithm performs well on randomly generated problem instances.  相似文献   

2.
We study two parallel machine scheduling problems with equal processing time jobs and delivery times and costs. The jobs are processed on machines which are located at different sites, and delivered to a customer by a single vehicle. The first objective considered is minimizing the sum of total weighted completion time and total vehicle delivery costs. The second objective considered is minimizing the sum of total tardiness and total vehicle delivery costs. We develop several interesting properties of an optimal scheduling and delivery policy, and show that both problems can be solved by reduction to the Shortest-Path problem in a corresponding network. The overall computational effort of both algorithms is O(n m2+m+1) (where n and m are the number of jobs and the number of machines, respectively) by the application of the Directed Acyclic Graph (DAG) method. We also discuss several special cases for which the overall computational effort can be significantly reduced.  相似文献   

3.
We study the problem of scheduling n non-preemptive jobs on m unrelated parallel machines. Each machine can process a specified subset of the jobs. If a job is assigned to a machine, then it occupies a specified time interval on the machine. Each assignment of a job to a machine yields a value. The objective is to find a subset of the jobs and their feasible assignments to the machines such that the total value is maximized. The problem is NP-hard in the strong sense. We reduce the problem to finding a maximum weight clique in a graph and survey available solution methods. Furthermore, based on the peculiar properties of graphs, we propose an exact solution algorithm and five heuristics. We conduct computer experiments to assess the performance of our and other existing heuristics. The computational results show that our heuristics outperform the existing heuristics.  相似文献   

4.
This paper considers the problem of scheduling n jobs on a single machine where the job value deteriorates with its starting time. The objective of the problem is to maximize the cumulative value of all jobs. The problem is motivated from the real-life applications, such as movie scheduling, remanufacturing of high-technology products, web object transmission, and banner advertising. Unrestricted, truncated, and capacity constrained job value functions are considered. Some special cases of the problem, such as the unrestricted linear job value function, are polynomially solvable. The general problem is shown to be unary NP-hard and is modelled as a time index integer program. For the NP-hard cases, several heuristics are proposed. Results of the empirical evaluation of the relative performance of the proposed heuristics on critical parameters are reported.  相似文献   

5.
研究带批运输的两台同型机排序问题. 在该问题中,工件在两台同型机上加工,完工的工件由一辆容量为z的车运输到客户. 这里假设工件有不同的物理大小,目标是求一个时间表使得所有工件送达客户且车回到机器所在位置的时间最小,给出了一个(14/9+ε)-近似算法  相似文献   

6.
蔡爽  杨珂  刘克 《运筹学学报》2018,22(4):17-30
考虑具有机器适用限制的多个不同置换流水车间的调度问题. 机器适用限制指的是每个工件只能分配到其可加工工厂集合. 所有置换流水车间拥有的机器数相同但是具有不同的加工能力. 首先, 针对该问题建立了基于位置的混合整数线性规划模型; 进而, 对一般情况和三种特殊情况给出了具有较小近似比的多项式时间算法. 其次, 基于NEH方法提出了启发式算法NEHg, 并给出了以NEHg为上界的分支定界算法. 最后, 通过例子说明了NEHg启发式算法和分支定界算法的计算过程, 并进行大量的实验将NEHg与NEH算法结果进行比较, 从而验证了NEHg算法的有效性.  相似文献   

7.
We consider a class of integrated scheduling problems for manufacturers. The manufacturer processes job orders and delivers products to the customer. The objective is to minimize the service span, that is, the period lasting from the time when the order is received to the time when all the products have been delivered to the customer. In the production phase, parallel batch-processing facilities are used to process the jobs. Jobs have arbitrary sizes and processing times. Each facility has a fixed capacity and jobs are processed in batches with the restriction that the total size of jobs in a batch does not exceed the facility capacity. When all the jobs in a batch are completed, the batch is completed. In the distribution phase, the manufacturer uses a vehicle with a fixed capacity to deliver products. The transportation time from the manufacturer to the customer is a constant. Completed products can be delivered in one transfer if the total size does not exceed the vehicle capacity. We first consider the problem where jobs have the same size and arbitrary processing times. We propose approximation algorithms for the problem and we show that a worst-case ratio performance guarantee is respectively 2–1/m. Then we consider the problem where jobs have the same processing time and arbitrary sizes. An approximation algorithm is proposed with an absolute worst-case ratio of 13/7 and an asymptotic worst-case ratio of 11/9. Both the proposed algorithms can be executed in polynomial time.  相似文献   

8.
We treat a problem of scheduling n jobs on a three stages hybrid flowshop of particular structure (one machine in the first and third stages and two dedicated machines in stage two). The objective is to minimize the makespan. This problem is NP-complete. We propose two heuristic procedures to cope with realistic problems. Extensive experimentation with various problem sizes are conducted and the computational results show excellent performance of the proposed heuristics.  相似文献   

9.
For the basic problem of non-preemptively scheduling n independent jobs on m identical parallel machines so that the minimum (or earliest) machine completion time is maximized, we compare the performance relationship between two well-known longest-first heuristics—the LPT- (longest processing time) and the RLPT-heuristic (restricted LPT). We provide insights into the solution structure of these two sequencing heuristics and prove that the minimum completion time of the LPT-schedule is at least as long as the minimum completion time of the RLPT-schedule. Furthermore, we show that the minimum completion time of the RLPT-heuristic always remains within a factor of 1/m of the optimal minimum completion time. The paper finishes with a comprehensive experimental study of the probabilistic behavior of RLPT-schedules compared to LPT-schedules in the two-machine case.  相似文献   

10.
Consider a single machine and a set of n jobs that are available for processing at time 0. Job j has a processing time pj, a due date dj and a weight wj. We consider bi-criteria scheduling problems involving the maximum weighted tardiness and the number of tardy jobs. We give NP-hardness proofs for the scheduling problems when either one of the two criteria is the primary criterion and the other one is the secondary criterion. These results answer two open questions posed by Lee and Vairaktarakis in 1993. We consider complexity relationships between the various problems, give polynomial-time algorithms for some special cases, and propose fast heuristics for the general case. The effectiveness of the heuristics is measured by empirical study. Our results show that one heuristic performs extremely well compared to optimal solutions.  相似文献   

11.
在单机排序和工件运输的最小化最大完工时间问题中,工件首先在一台机器上加工,然后被一辆有容量限制的汽车运送到一个顾客.当工件的加工时间和尺寸无关时, Chang和Lee已经证明该问题是强NP困难的.他们也给出了一个启发式算法,它的最差执行比为5/3,并且这个界是紧的.本文考虑工件的加工时间和尺寸成正比的情形,证明了Chang和Lee的算法有更好的最差执行比53/35,并提供了一个新的启发式算法,它的最差执行比是3/2,并且这个界是最好的.  相似文献   

12.
We study a single-machine scheduling problem with periodic maintenance activity under two maintenance stratagems. Although the scheduling problem with single or periodic maintenance and nonresumable jobs has been well studied, most of past studies considered only one maintenance stratagem. This research deals with a single-machine scheduling problem where the machine should be stopped for maintenance after a fixed periodic interval (T) or after a fixed number of jobs (K) have been processed. The objective is to minimize the makespan for the addressed problem. A two-stage binary integer programming (BIP) model is provided for driving the optimal solution up to 350-job instances. For the large-sized problems, two efficient heuristics are provided for the different combinations of T and K. Computational results show that the proposed algorithm Best-Fit-Butterfly (BBF) performs well because the total average percentage error is below 1%. Once the constraint of the maximum number of jobs (K) processed in the machine’s available time interval (T) is equal or larger than half of jobs, the heuristic Best-Fit-Decreasing (DBF) is strongly recommended.  相似文献   

13.
Parallel machine scheduling problems with a single server   总被引:3,自引:0,他引:3  
In this paper, we consider the problem of scheduling jobs on parallel machines with setup times. The setup has to be performed by a single server. The objective is to minimize the schedule length (makespan), as well as the forced idle time. The makespan problem is known to be NP-hard even for the case of two identical parallel machines. This paper presents a pseudopolynomial algorithm for the case of two machines when all setup times are equal to one. We also show that the more general problem with an arbitrary number of machines is unary NP-hard and analyze some list scheduling heuristics for this problem. The problem of minimizing the forced idle time is known to be unary NP-hard for the case of two machines and arbitrary setup and processing times. We prove unary NP-hardness of this problem even for the case of constant setup times. Moreover, some polynomially solvable cases are given.  相似文献   

14.
We consider the minmax regret (robust) version of the problem of scheduling n jobs on a machine to minimize the total flow time, where the processing times of the jobs are uncertain and can take on any values from the corresponding intervals of uncertainty. We prove that the problem in NP-hard. For the case where all intervals of uncertainty have the same center, we show that the problem can be solved in O(nlogn) time if the number of jobs is even, and is NP-hard if the number of jobs is odd. We study structural properties of the problem and discuss some polynomially solvable cases.  相似文献   

15.
We consider a scheduling problem in a factory producing printed circuit boards (PCBs). The PCB assembly process in this factory can be regarded as a flowshop which has two special characteristics: jobs have sequence dependent setup times and each job consists of a lot (batch) of identical PCBs. Because of the latter characteristic, it is possible to start a job on a following machine before the job is entirely completed on a previous machine, that is, there is time-lag between machines. In this paper, we propose several heuristics, including taboo search (TS) and simulated annealing (SA) methods, for this generalized flowshop scheduling problem with the objective of minimizing mean tardiness. We compare suggested heuristics after series of tests to find appropriate values for parameters needed for the two search algorithms, TS and SA. Results of computational tests on randomly generated test problems are reported.  相似文献   

16.
In this study, a bicriteria m-machine flowshop scheduling with sequence-dependent setup times is considered. The objective function of the problem is minimization of the weighted sum of total completion time and makespan. Only small size problems with up to 6 machines and 18 jobs can be solved by the proposed integer programming model. Also the model is tested on an example. We also proposed three heuristic approaches for solving large jobs problems. To solve the large sizes problems up to 100 jobs and 10 machines, special heuristics methods is used. Results of computational tests show that the proposed model is effective in solving problems.  相似文献   

17.
An important problem that arises in the area of grid computing is one of optimally assigning jobs to resources to achieve a business objective. In the grid computing area, however, such scheduling has mostly been done from the perspective of maximizing the utilization of resources. As this form of computing proliferates, the business aspects will become crucial for the overall success of the technology. Hence, we discuss the grid scheduling problem from a business perspective. We show that this problem is not only strongly NP-hard, but it is also non-approximable. Therefore, we propose heuristics for different variants of the problem and show that these heuristics provide near-optimal solution for a wide variety of problem instances. We show that the execution times of proposed heuristics are very low, and hence, they are suitable for solving problems in real-time. We also present several managerial implications and compare the performance of two widely used models in the real-time scheduling of grid computing.  相似文献   

18.
A flow shop with identical machines is called a proportionate flow shop. In this paper, we consider the variant of the n-job, m-machine proportionate flow shop scheduling problem in which only one machine is different and job processing times are inversely proportional to machine speeds. The objective is to minimize maximum completion time. We describe some optimality conditions and show that the problem is NP-complete. We provide two heuristic procedures whose worst-case performance ratio is less than two. Extensive experiments with various sizes are conducted to show the performance of the proposed heuristics.  相似文献   

19.
In this paper we study the problem of scheduling n jobs on a single machine with availability constraints. The objective is to minimize total weighted job completion times. We show that the problem is NP-hard in the strong sense. Then we consider two intractable special cases, namely, proportional weight case, and single availability constraint case. We propose two heuristics for these cases and analyze their worst-case error bounds.  相似文献   

20.
研究了单机环境下生产与配送的协同排序问题.有多个工件需要在一台机器上进行加工,加工完的工件需要分批配送到一个客户.每批工件只能在固定的几个配送时刻出发,不同的配送时刻对应着不同的配送费用.我们的目标是找到生产与配送的协同排序,极小化排序的时间费用与配送费用的加权和.研究了排序理论中主要的四个目标函数,构建了单机情况下的具体模型,分析了问题的复杂性,对于配送费用单调非增的情况给出了它们的最优算法.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号