首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
We provide two types of semilocal convergence theorems for approximating a solution of an equation in a Banach space setting using an inexact Newton method [I.K. Argyros, Relation between forcing sequences and inexact Newton iterates in Banach spaces, Computing 63 (2) (1999) 134–144; I.K. Argyros, A new convergence theorem for the inexact Newton method based on assumptions involving the second Fréchet-derivative, Comput. Appl. Math. 37 (7) (1999) 109–115; I.K. Argyros, Forcing sequences and inexact Newton iterates in Banach space, Appl. Math. Lett. 13 (1) (2000) 77–80; I.K. Argyros, Local convergence of inexact Newton-like iterative methods and applications, Comput. Math. Appl. 39 (2000) 69–75; I.K. Argyros, Computational Theory of Iterative Methods, in: C.K. Chui, L. Wuytack (Eds.), in: Studies in Computational Mathematics, vol. 15, Elsevier Publ. Co., New York, USA, 2007; X. Guo, On semilocal convergence of inexact Newton methods, J. Comput. Math. 25 (2) (2007) 231–242]. By using more precise majorizing sequences than before [X. Guo, On semilocal convergence of inexact Newton methods, J. Comput. Math. 25 (2) (2007) 231–242; Z.D. Huang, On the convergence of inexact Newton method, J. Zheijiang University, Nat. Sci. Ed. 30 (4) (2003) 393–396; L.V. Kantorovich, G.P. Akilov, Functional Analysis, Pergamon Press, Oxford, 1982; X.H. Wang, Convergence on the iteration of Halley family in weak condition, Chinese Sci. Bull. 42 (7) (1997) 552–555; T.J. Ypma, Local convergence of inexact Newton methods, SIAM J. Numer. Anal. 21 (3) (1984) 583–590], we provide (under the same computational cost) under the same or weaker hypotheses: finer error bounds on the distances involved; an at least as precise information on the location of the solution. Moreover if the splitting method is used, we show that a smaller number of inner/outer iterations can be obtained.  相似文献   

2.
We provide a semilocal convergence analysis for Newton-like methods of ??bounded deterioration?? in a Banach space setting. We establish tighter error bounds on the distances involved, and a more precise information on the location of the solution, under the same or weaker hypotheses than before (Argyros, Acta Math. Sin. (Engl. Ser.), 23:2087?C2096, 2007; Deuflhard, Newton methods for nonlinear problems. Affine invariance and adaptive algorithms, Springer Series in Computational Mathematics, vol. 35. Springer, Berlin, 2004; Ezquerro and Hern??ndez, IMA J. Numer. Anal., 22:187?C205, 2002) using recurrent functions. Numerical examples are also provided involving polynomial, integral, and differential equations.  相似文献   

3.
For the iteration which was independently proposed by King [R.F. King, Tangent method for nonlinear equations, Numer. Math. 18 (1972) 298-304] and Werner [W. Werner, Über ein Verfarhren der Ordnung zur Nullstellenbestimmung, Numer. Math. 32 (1979) 333-342] for solving a nonlinear operator equation in Banach space, we established a local convergence theorem under the condition which was introduced recently by Argyros [I.K. Argyros, A unifying local-semilocal convergence analysis and application for two-point Newton-like methods in Banach space, J. Math. Anal. Appl. 298 (2004) 374-397].  相似文献   

4.
We provide a new semilocal convergence analysis for generating an inexact Newton method converging to a solution of a nonlinear equation in a Banach space setting. Our analysis is based on our idea of recurrent functions. Our results are compared favorably to earlier ones by others and us (Argyros (2007, 2009) [5] and [6], Argyros and Hilout (2009) [7], Guo (2007) [15], Shen and Li (2008) [18], Li and Shen (2008) [19], Shen and Li (2009) [20]). Numerical examples are provided to show that our results apply, but not earlier ones [15], [18], [19] and [20].  相似文献   

5.
We introduce a three-step Chebyshev-Secant-type method (CSTM) with high efficiency index for solving nonlinear equations in a Banach space setting. We provide a semilocal convergence analysis for (CSTM) using recurrence relations. Numerical examples validating our theoretical results are also provided in this study.  相似文献   

6.
The convergence of iterative methods for solving nonlinear operator equations in Banach spaces is established from the convergence of majorizing sequences. An alternative approach is developed to establish this convergence by using recurrence relations. For example, the recurrence relations are used in establishing the convergence of Newton's method [L.B. Rall, Computational Solution of Nonlinear Operator Equations, Robert E. Krieger, New York, 1979] and the third order methods such as Halley's, Chebyshev's and super Halley's [V. Candela, A. Marquina, Recurrence relations for rational cubic methods I: the Halley method, Computing 44 (1990) 169–184; V. Candela, A. Marquina, Recurrence relations for rational cubic methods II: the Halley method, Computing 45 (1990) 355–367; J.A. Ezquerro, M.A. Hernández, Recurrence relations for Chebyshev-type methods, Appl. Math. Optim. 41 (2000) 227–236; J.M. Gutiérrez, M.A. Hernández, Third-order iterative methods for operators with bounded second derivative, J. Comput. Appl. Math. 82 (1997) 171–183; J.M. Gutiérrez, M.A. Hernández, Recurrence relations for the Super–Halley method, Comput. Math. Appl. 7(36) (1998) 1–8; M.A. Hernández, Chebyshev's approximation algorithms and applications, Comput. Math. Appl. 41 (2001) 433–445 [10]].  相似文献   

7.
The famous Newton-Kantorovich hypothesis (Kantorovich and Akilov, 1982 [3], Argyros, 2007 [2], Argyros and Hilout, 2009 [7]) has been used for a long time as a sufficient condition for the convergence of Newton’s method to a solution of an equation in connection with the Lipschitz continuity of the Fréchet-derivative of the operator involved. Here, using Lipschitz and center-Lipschitz conditions, and our new idea of recurrent functions, we show that the Newton-Kantorovich hypothesis can be weakened, under the same information. Moreover, the error bounds are tighter than the corresponding ones given by the dominating Newton-Kantorovich theorem (Argyros, 1998 [1]; [2] and [7]; Ezquerro and Hernández, 2002 [11]; [3]; Proinov 2009, 2010 [16] and [17]).Numerical examples including a nonlinear integral equation of Chandrasekhar-type (Chandrasekhar, 1960 [9]), as well as a two boundary value problem with a Green’s kernel (Argyros, 2007 [2]) are also provided in this study.  相似文献   

8.
Viscosity approximation methods for a family of finite nonexpansive mappings are established in Banach spaces. The main theorems extend the main results of Moudafi [Viscosity approximation methods for fixed-points problems, J. Math. Anal. Appl. 241 (2000) 46–55] and Xu [Viscosity approximation methods for nonexpansive mappings, J. Math. Anal. Appl. 298 (2004) 279–291] to the case of finite mappings. Our results also improve and unify the corresponding results of Bauschke [The approximation of fixed points of compositions of nonexpansive mappings in Hilbert space, J. Math. Anal. Appl. 202 (1996) 150–159], Browder [Convergence of approximations to fixed points of nonexpansive mappings in Banach spaces, Archiv. Ration. Mech. Anal. 24 (1967) 82–90], Cho et al. [Some control conditions on iterative methods, Commun. Appl. Nonlinear Anal. 12 (2) (2005) 27–34], Ha and Jung [Strong convergence theorems for accretive operators in Banach spaces, J. Math. Anal. Appl. 147 (1990) 330–339], Halpern [Fixed points of nonexpansive maps, Bull. Amer. Math. Soc. 73 (1967) 957–961], Jung [Iterative approaches to common fixed points of nonexpansive mappings in Banach spaces, J. Math. Anal. Appl. 302 (2005) 509–520], Jung et al. [Iterative schemes with some control conditions for a family of finite nonexpansive mappings in Banach space, Fixed Point Theory Appl. 2005 (2) (2005) 125–135], Jung and Kim [Convergence of approximate sequences for compositions of nonexpansive mappings in Banach spaces, Bull. Korean Math. Soc. 34 (1) (1997) 93–102], Lions [Approximation de points fixes de contractions, C.R. Acad. Sci. Ser. A-B, Paris 284 (1977) 1357–1359], O’Hara et al. [Iterative approaches to finding nearest common fixed points of nonexpansive mappings in Hilbert spaces, Nonlinear Anal. 54 (2003) 1417–1426], Reich [Strong convergence theorems for resolvents of accretive operators in Banach spaces, J. Math. Anal. Appl. 75 (1980) 287–292], Shioji and Takahashi [Strong convergence of approximated sequences for nonexpansive mappings in Banach spaces, Proc. Amer. Math. Soc. 125 (12) (1997) 3641–3645], Takahashi and Ueda [On Reich's strong convergence theorems for resolvents of accretive operators, J. Math. Anal. Appl. 104 (1984) 546–553], Wittmann [Approximation of fixed points of nonexpansive mappings, Arch. Math. 59 (1992) 486–491], Xu [Iterative algorithms for nonlinear operators, J. London Math. Soc. 66 (2) (2002) 240–256], and Zhou et al. [Strong convergence theorems on an iterative method for a family nonexpansive mappings in reflexive Banach spaces, Appl. Math. Comput., in press] among others.  相似文献   

9.
We present new results for the local convergence of the Newton-like method to a unique solution of nondifferentiable variational inclusions in a Banach space setting using the Lipschitz-like property of set-valued mappings and the concept of slant differentiability hypothesis on the operator involved, as was introduced by X. Chen, Z. Nashed and L. Qi. The linear convergence of the Newton-like method is also established. Our results extend the applicability of the Newton-like method (Argyros and Hilout, 2009 [5] and Chen, Nashed and Qi, 2000 [7]) to variational inclusions.  相似文献   

10.
The semi-local convergence of a Newton-type method used to solve nonlinear equations in a Banach space is studied. We also give, as two important applications, convergence analyses of two classes of two-point Newton-type methods including a method mentioned in [5] and the midpoint method studied in [1], [2] and [12]. Recently, interest has been shown in such methods [3] and [4].  相似文献   

11.
We use Newton’s method to approximate a locally unique solution of an equation in a Banach space setting. We introduce recurrent functions to provide a weaker semilocal convergence analysis for Newton’s method than before [J. Appell, E. De Pascale, J.V. Lysenko, P.P. Zabrejko, New results on Newton–Kantorovich approximations with applications to nonlinear integral equations, Numer. Funct. Anal. Optim. 18 (1997) 1–17; I.K. Argyros, The theory and application of abstract polynomial equations, in: Mathematics Series, St. Lucie/CRC/Lewis Publ., Boca Raton, Florida, USA, 1998; I.K. Argyros, Concerning the “terra incognita” between convergence regions of two Newton methods, Nonlinear Anal. 62 (2005) 179–194; I.K. Argyros, Convergence and Applications of Newton-Type Iterations, Springer-Verlag Publ., New York, 2008; S. Chandrasekhar, Radiative Transfer, Dover Publ., New York, 1960; F. Cianciaruso, E. De Pascale, Newton–Kantorovich approximations when the derivative is Hölderian: Old and new results, Numer. Funct. Anal. Optim. 24 (2003) 713–723; N.T. Demidovich, P.P. Zabrejko, Ju.V. Lysenko, Some remarks on the Newton–Kantorovich method for nonlinear equations with Hölder continuous linearizations, Izv. Akad. Nauk Belorus 3 (1993) 22–26. (in Russian); E. De Pascale, P.P. Zabrejko, Convergence of the Newton–Kantorovich method under Vertgeim conditions: A new improvement, Z. Anal. Anwendvugen 17 (1998) 271–280; L.V. Kantorovich, G.P. Akilov, Functional Analysis, Pergamon Press, Oxford, 1982; J.V. Lysenko, Conditions for the convergence of the Newton–Kantorovich method for nonlinear equations with Hölder linearizations, Dokl. Akad. Nauk BSSR 38 (1994) 20–24. (in Russian); B.A. Vertgeim, On conditions for the applicability of Newton’s method, (Russian), Dokl. Akad. Nauk., SSSR 110 (1956) 719–722; B.A. Vertgeim, On some methods for the approximate solution of nonlinear functional equations in Banach spaces, Uspekhi Mat. Nauk 12 (1957) 166–169. (in Russian); English transl.:; Amer. Math. Soc. Transl. 16 (1960) 378–382] provided that the Fréchet-derivative of the operator involved is pp-Hölder continuous (p∈(0,1]p(0,1]).  相似文献   

12.
The article treats the monotone behaviour of successive approximations computed by some Newton-like method for solving a nonlinear operator equation in a Banach space endowed with a partial ordering for which it is a Banach lattice.  相似文献   

13.
We present a local as well as a semilocal convergence analysis for Newton’s method for approximating a locally unique solution of a nonlinear equation in a Banach space setting. Our hypotheses involve m-Fréchet-differentiable operators and general Lipschitz-type hypotheses, where m≥2 is a positive integer. The new convergence analysis unifies earlier results; it is more flexible and provides a finer convergence analysis than in earlier studies such as Argyros in J. Comput. Appl. Math. 131:149–159, 2001, Argyros and Hilout in J. Appl. Math. Comput. 29:391–400, 2009, Argyros and Hilout in J. Complex. 28:364–387, 2012, Argyros et al. Numerical Methods for Equations and Its Applications, CRC Press/Taylor & Francis, New York, 2012, Gutiérrez in J. Comput. Appl. Math. 79:131–145, 1997, Ren and Argyros in Appl. Math. Comput. 217:612–621, 2010, Traub and Wozniakowski in J. Assoc. Comput. Mech. 26:250–258, 1979. Numerical examples are presented further validating the theoretical results.  相似文献   

14.
Summary A convergence theorem for Newton-like methods in Banach spaces is given, which improves results of Rheinboldt [27], Dennis [4], Miel [15, 16] and Moret [18] and includes as a special case an updated (affine-invariant [6]) version of the Kantorovich theorem for the Newton method given in previous papers [35, 36]. Error bounds obtained in [34] are also improved. This paper unifies the study of finding sharp error bounds for Newton-like methods under Kantorovich type assumptions.Sponsored by the United States Army under Contract No. DAAG29-80-C-0041 and by the Ministry of Education, Japan  相似文献   

15.
We revisit a fast iterative method studied by us in [I.K. Argyros, On a two-point Newton-like method of convergent order two, Int. J. Comput. Math. 88 (2) (2005) 219-234] to approximate solutions of nonlinear operator equations. The method uses only divided differences of order one and two function evaluations per step. This time we use a simpler Kantorovich-type analysis to establish the quadratic convergence of the method in the local as well as the semilocal case. Moreover we show that in some cases our method compares favorably, and can be used in cases where other methods using similar information cannot [S. Amat, S. Busquier, V.F. Candela, A class of quasi-Newton generalized Steffensen's methods on Banach spaces, J. Comput. Appl. Math. 149 (2) (2002) 397-406; D. Chen, On the convergence of a class of generalized Steffensen's iterative procedures and error analysis, Int. J. Comput. Math. 31 (1989) 195-203]. Numerical examples are provided to justify the theoretical results.  相似文献   

16.
In this paper, we introduce a composite iterative scheme by viscosity approximation method for finding a zero of an accretive operator in Banach spaces. Then, we establish strong convergence theorems for the composite iterative scheme. The main theorems improve and generalize the recent corresponding results of Kim and Xu [T.H. Kim, H.K. Xu, Strong convergence of modified Mann iterations, Nonlinear Anal. 61 (2005) 51-60], Qin and Su [X. Qin, Y. Su, Approximation of a zero point of accretive operator in Banach spaces, J. Math. Anal. Appl. 329 (2007) 415-424] and Xu [H.K. Xu, Strong convergence of an iterative method for nonexpansive and accretive operators, J. Math. Anal. Appl. 314 (2006) 631-643] as well as Aoyama et al. [K. Aoyama, Y Kimura, W. Takahashi, M. Toyoda, Approximation of common fixed points of a countable family of nonexpansive mappings in Banach spaces, Nonlinear Anal. 67 (2007) 2350-2360], Benavides et al. [T.D. Benavides, G.L. Acedo, H.K. Xu, Iterative solutions for zeros of accretive operators, Math. Nachr. 248-249 (2003) 62-71], Chen and Zhu [R. Chen, Z. Zhu, Viscosity approximation fixed points for nonexpansive and m-accretive operators, Fixed Point Theory and Appl. 2006 (2006) 1-10] and Kamimura and Takahashi [S. Kamimura, W. Takahashi, Approximation solutions of maximal monotone operators in Hilberts spaces, J. Approx. Theory 106 (2000) 226-240].  相似文献   

17.
We provide a local convergence analysis for Newton’s method under a weak majorant condition in a Banach space setting. Our results provide under the same information a larger radius of convergence and tighter error estimates on the distances involved than before [14]. Special cases and numerical examples are also provided in this study.  相似文献   

18.
In this paper we deal with fixed point computational problems by strongly convergent methods involving strictly pseudocontractive mappings in smooth Banach spaces. First, we prove that the S-iteration process recently introduced by Sahu in [14] converges strongly to a unique fixed point of a mapping T, where T is κ-strongly pseudocontractive mapping from a nonempty, closed and convex subset C of a smooth Banach space into itself. It is also shown that the hybrid steepest descent method converges strongly to a unique solution of a variational inequality problem with respect to a finite family of λi-strictly pseudocontractive mappings from C into itself. Our results extend and improve some very recent theorems in fixed point theory and variational inequality problems. Particularly, the results presented here extend some theorems of Reich (1980) [1] and Yamada (2001) [15] to a general class of λ-strictly pseudocontractive mappings in uniformly smooth Banach spaces.  相似文献   

19.
We introduce some new very general ways of constructing fast two-step Newton-like methods to approximate a locally unique solution of a nonlinear operator equation in a Banach space setting. We provide existence-uniqueness theorems as well as an error analysis for the iterations involved using Newton-Kantorovich-type hypotheses and the majorant method. Our results depend on the existence of a Lipschitz function defined on a closed ball centered at a certain point and of a fixed radius and with values into the positive real axis. Special choices of this function lead to favorable comparisons with results already in the literature. Some applications to the solution of nonlinear integral equations appearing in radiative transfer as well as to the solution of integral equations of Uryson-type are also provided.  相似文献   

20.
In this paper we propose a new modified viscosity approximation method for approximating common fixed points for a countable family of nonexpansive mappings in a Banach space. We prove strong convergence theorems for a countable family nonexpansive mappings in a reflexive Banach space with uniformly Gateaux differentiable norm under some control conditions. These results improve and extend the results of Jong Soo Jung [J.S. Jung, Convergence on composite iterative schemes for nonexpansive mappings in Banach spaces, Fixed Point Theory and Appl. 2008 (2008) 14 pp., Article ID 167535]. Further, we apply our result to the problem of finding a zero of an accretive operator and extend the results of Kim and Xu [T.H. Kim, H.K. Xu, Strong convergence of modified Mann iterations, Nonlinear Anal. 61 (2005) 51-60], Ceng, et al. [L.-C. Ceng, A.R. Khan, Q.H. Ansari, J.-C, Yao, Strong convergence of composite iterative schemes for zeros of m-accretive operators in Banach space, Nonlinear Anal. 70 (2009)1830-1840] and Chen and Zhu [R. Chen, Z. Zhu, Viscosity approximation methods for accretive operator in Banach space, Nonlinear Anal. 69 (2008) 1356-1363].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号