首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Based on the classical predator–prey system with Watt-type functional response, an impulsive differential equations to model the process of periodic perturbations on the predator at different fixed time for pest control is proposed and investigated. It proves that there exists a globally asymptotically stable prey-eradication periodic solution when the impulse period is less than some critical value, and otherwise, the system can be permanent. Numerical results show that the system considered has more complicated dynamics involving quasi-periodic oscillation, narrow periodic window, wide periodic window, chaotic bands, period doubling bifurcation, symmetry-breaking pitchfork bifurcation, period-halving bifurcation and “crises”, etc. It will be useful for studying the dynamic complexity of ecosystems.  相似文献   

2.
In 1978, Marotto generalized Li–Yorke’s results on the criterion for chaos from one-dimensional discrete dynamical systems to n-dimensional discrete dynamical systems, showing that the existence of a non-degenerate snap-back repeller implies chaos in the sense of Li–Yorke. This theorem is very useful in predicting and analyzing discrete chaos in multi-dimensional dynamical systems. Yet, besides it is well known that there exists an error in the conditions of the original Marotto Theorem, and several authors had tried to correct it in different way, Chen, Hsu and Zhou pointed out that the verification of “non-degeneracy” of a snap-back repeller is the most difficult in general and expected, “almost beyond reasonable doubt,” that the existence of only degenerate snap-back repeller still implies chaotic, which was posed as a conjecture by them. In this paper, we shall give necessary and sufficient conditions of chaos in the sense of Li–Yorke for planar monotone or competitive discrete dynamical systems and solve Chen–Hsu–Zhou Conjecture for such kinds of systems.  相似文献   

3.
Understanding the nonlinear dynamics of cutting processes is essential for the improvement of machining technology. We study machine cutting processes by two different models, one has been recently introduced by Litak [Litak G. Chaotic vibrations in a regenerative cutting process. Chaos, Solitons & Fractals 2002;13:1531–5] and the other is the classic delay differential equation model. Although chaotic solutions have been found in both models, well known routes to chaos, such as period-doubling or quasi-periodic motion to chaos are not observed in either model. Careful analysis shows that the chaotic motion from the Litak’s model has sharper spectral peaks, a smaller correlation dimension and a smaller value for the largest positive Lyapunov exponent. Implications to the control of chaos in cutting processes are discussed.  相似文献   

4.
In this paper, we study dynamics of a class of chromosome’s attractors. We show that these chromosome sequences are chaotic by giving a rigorous verification for existence of horseshoes in these systems. We prove that the Poincaré maps derived from these chromosome’s attractors are semi-conjugate to the 2-shift map, and its entropy is no less than log 2. The chaotic behavior is robust in the following sense: chaos exists when one parameter varies from −5.5148 to −5.4988.  相似文献   

5.
A thermodynamic model of the accumulation of diffuse damage in deformed solids is proposed. A closed system of dynamic equations of thermo-fractomechanics is constructed. A solution of the non-linear equation of the “diffusion” of damage in the form of a plane stationary kink-shaped damage wave is obtained. It is shown that the velocity of the wave front is proportional to the invariants of the strain (stress) tensor and the “diffusion” coefficient, and inversely proportional to the force of resistance to damage accumulation.  相似文献   

6.
Crisis-induced chaos in the Rose-Hindmarsh model for neuronal activity   总被引:2,自引:0,他引:2  
The bifurcation diagrams for the Rose-Hindmarsh model are obtained from the Poincaré maps which govern the dynamics of this differential system. The Lyapunov spectra for this model are estimated from time series. The transition from periodicity to crisis-induced chaos. and back to periodicity is presented for I [2.5, 2.69]. and is qualitatively different from the transitions described for different parameter regions [A. V. Holden and Yinshui Fan, Chaos, Solitons & Fractals 2, 221–236 (1992); Chaos, Solitons & Fractals 2, 349–369 (1992)]. A piecewise smooth, one-dimensional map is constructed to simulate the dynamics of the model and to reproduce the process of crisis-induced chaos.  相似文献   

7.
One of the more striking aspects of the current Standard Model for particle physics is the replication in the total number of quarks and leptons. There are three consecutive generations of these particles and the physical significance of their grouping by mass is neither fully explained nor universally accepted. Our study suggests that the lepton mass spectrum may be recovered from the underlying chaotic dynamics of the simplest prototype for classical boson–fermion interaction, the linear σ-model.  相似文献   

8.
We present a new ecological model, which displays “edge of chaos” (EoC) in parameter space. This suggests that ecological systems are not chaotic, instead, their dynamics can be characterized as short-term recurrent chaos. The system’s dynamics is unpredictable and admits bursts of short-term predictability. We also provide results, which suggest that fully developed chaos will rarely be observed in natural systems.  相似文献   

9.
A new type of discrete dynamical systems model for populations, called an exponentially self-regulating (ESR) map, is introduced and analyzed in considerable detail for the case of two competing species. The ESR model exhibits many dynamical features consistent with the observed interactions of populations and subsumes some of the most successful discrete biological models that have been studied in the literature. For example, the well-known Tribolium model is an ESR map. It is shown that in addition to logistic dynamics – ranging from the very simple to manifestly chaotic one-dimensional regimes – the ESR model exhibits, for some parameter values, its own brands of bifurcation and chaos that are essentially two-dimensional in nature. In particular, it is proved that ESR systems have twisted horseshoe with bending tail dynamics associated to an essentially global strange attractor for certain parameter ranges. The existence of a global strange attractor makes the ESR map more plausible as a model for actual populations than several other extant models, including the Lotka–Volterra map.  相似文献   

10.
Two different methods (the WTMM- and DFA-approaches) are applied to investigate the scaling properties in the return-time sequences generated by a system of two coupled chaotic oscillators. Transitions from twomode asynchronous dynamics (torus or torus–chaos) to different states of chaotic phase synchronization are found to significantly reduce the degree of multiscality. The influence of external noise on the possibility of distinguishing the various chaotic states is considered.  相似文献   

11.
The irradiation of solids by pulsed (of nanosecond periodicity) relativistic electron beams (also by powerful optic laser beams) led to the discovery of a new type of fracture /1–14/, entirely different from viscous or brittle fracture type produced by mechanical loads /15/. A theory based on the assumption of formation in a solid subjected to such irradiation of clusters of electrons that act as “knives” or “wedges” cutting the solid. Basic model problems of this theory are formulated.  相似文献   

12.
The Dempster–Shafer (DS) theory of probabilistic reasoning is presented in terms of a semantics whereby every meaningful formal assertion is associated with a triple (pqr) where p is the probability “for” the assertion, q is the probability “against” the assertion, and r is the probability of “don’t know”. Arguments are presented for the necessity of “don’t know”. Elements of the calculus are sketched, including the extension of a DS model from a margin to a full state space, and DS combination of independent DS uncertainty assessments on the full space. The methodology is applied to inference and prediction from Poisson counts, including an introduction to the use of join-tree model structure to simplify and shorten computation. The relation of DS theory to statistical significance testing is elaborated, introducing along the way the new concept of “dull” null hypothesis.  相似文献   

13.
This paper investigates the complex dynamics in a discrete-time model of predator–prey interaction with a Beddington–DeAngelis functional response. Local stability analysis of this model is carried out and many forms of complexities are observed using ecology theories and numerical simulation of the global behavior. Furthermore, the existence of a strange attractor and computation of the largest Lyapunov exponent also demonstrate the chaotic dynamic behavior of the model. The results show that the system exhibits rich complexity features such as stable, periodic and chaotic dynamics.  相似文献   

14.
In this paper we develop analytical techniques for proving the existence of chaotic dynamics in systems where the dynamics is generated by infinite sequences of maps. These are generalizations of the Conley-Moser conditions that are used to show that a (single) map has an invariant Cantor set on which it is topologically conjugate to a subshift on the space of symbol sequences. The motivation for developing these methods is to apply them to the study of chaotic advection in fluid flows arising from velocity fields with aperiodic time dependence, and we show how dynamics generated by infinite sequences of maps arises naturally in that setting. Our methods do not require the existence of a homoclinic orbit in order to conclude the existence of chaotic dynamics. This is important for the class of fluid mechanical examples considered since one cannot readily identify a homoclinic orbit from the structure of the equations.¶We study three specific fluid mechanical examples: the Aref blinking vortex flow, Samelson's tidal advection model, and Min's rollup-merge map that models kinematics in the mixing layer. Each of these flows is modelled as a type of "blinking flow", which mathematically has the form of a linked twist map, or an infinite sequence of linked twist maps. We show that the nature of these blinking flows is such that it is possible to have a variety of "patches" of chaos in the flow corresponding to different length and time scales.  相似文献   

15.
The dynamics of a gyro in gimbal with a PID controller to obtain steady state, self-oscillating and chaotic motion is considered in this paper. The mathematical model of the whole system is deduced from the gyroscope nutation theory and from a feedback control system formed by a PID controller with constrained integral action. The paper shows that the gyro and the associated PID feedback control system have multiple equilibrium points, and from the analysis of a Poincaré–Andronov–Hopf bifurcation at the equilibrium points, it is possible to deduce the conditions, which give regular and self-oscillating behaviour. The calculation of the first Lyapunov value is used to predict the motion of the gyro in order to obtain a desired equilibrium point or self-oscillating behaviour. The mechanism of the stability loss of the gyro under small vibrations of the gyro platform and the appearance of chaotic motion is also presented. Numerical simulations are performed to verify the analytical results.  相似文献   

16.
A class of conflict-controlled processes [1–3] with additional (“phase” type) restrictions on the state of the evader is considered. A similar unrestricted problem was considered in [4]. Unlike [5, 6] the boundary of the “phase” restrictions is not a “death line” for the evader. Sufficient conditions for the solvability of the pursuit and evasion problems are obtained, which complement a range of well-known results [5–10].  相似文献   

17.
We study nonlinear stability of solitons under the action of external spatiotemporal perturbations. Previous results on stationary structures [Rizzato FB, de Oliveira GI, Chian AC-L. Nonlinear stability of solitons against strong external perturbations. Phys Rev E 2003;67:047601] are extended to show that the centroid of moving solitons may develop chaotic dynamics, which under certain circumstances affects the corresponding envelope dynamics of these modes and reduces their stability. Applications to plasmas and Bose–Einstein condensates are discussed.  相似文献   

18.
The convergence properties of genetic algorithms with noisy fitness information are studied here. In the proposed scheme, hypothesis testing methods are used to compare sample fitness values. The “best” individual of each generation is kept and a greater-than-zero mutation rate is used so that every individual will be generated with positive probability in each generation. The convergence criterion is different from the frequently-used uniform population criterion; instead, the sequence of the “best” individual in each generation is considered, and the algorithm is regarded as convergent if the sequence of the “best” individuals converges with probability one to a point with optimal average fitness.  相似文献   

19.
How Emergent Models May Foster the Constitution of Formal Mathematics   总被引:6,自引:0,他引:6  
This article deals with the role that so-called emergent models can play in the process of constituting formal mathematics. The underlying philosophy is that formal mathematics is something that is, or should be, constituted by the students themselves. In the instructional design theory for realistic mathematics education, models always have been employed to foster a process in which formal mathematics is reinvented by the students themselves. This article describes how the use of models became more and more explicated over time and developed into the notion of emergent models. The design of an instructional sequence, which deals with flexible mental computation strategies for addition and subtraction up to 100, is taken as an instance for elaborating what is meant by emergent models and what role they play in fostering the constitution of formal mathematics. The analysis shows that there are 3 interrelated processes. First. at a more holistic level, there is a global transition in which “the model” initially emerges as a model of informal mathematical activity and then gradually develops into a model for more formal mathematical reasoning. Second, the transition from “model of” to “model for” involves the constitution of anew mathematical reality that can be denoted formal in relation to the original starting points of the students. Third, in the series of instructional activities, there is not 1 model, but the model actually is shaped as a series of signs, in which each new sign comes to signify activity with a previous sign in a chain of signification.  相似文献   

20.
This paper examines a model of labor market dynamics in an economy undergoing transition from command socialism to market capitalism. State sector layoffs are modeled as a function of forecasts made by state planners of private sector wages where the laidoff workers are to be re-employed. The state switches between using a high information cost perfect forecast and a free naive forecast in a system that resembles a cobweb supply-demand model. Under certain specifications and parameter values chaotic dynamics are shown to endogenously emerge along with several other varieties of complex dynamics including strange attractors, coexistence of infinitely many stable cycles, cascades of infinitely many period doubling bifurcations and fractal basin boundaries between coexisting non-chaotic attractors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号