首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
NMR of laser-polarized xenon is used to probe the dissolution behaviour of the noble gas in different liquids. The dissolution and self-relaxation rates are extracted via a macroscopic model, and comparison of the decay rate of the xenon magnetization in deuterated and non-deuterated solvent pairs allows the determination of the pure dipole-dipole contribution to relaxation. A transient convective effect, tentatively assigned to the xenon concentration gradient, is observed and characterized by diffusion encoding MRI experiments. The flow of xenon penetrates inside the solvent near the walls of the NMR tube, the longitudinal images showing a “” shape, the transverse ones a “O” shape. This convection effect has implications for delivery conditions of laser-polarized xenon in continuous flow experiments and magnetic resonance imaging. Received 29 April 2002 / Received in final form 26 July 2002 Published online 22 October 2002 RID="a" ID="a"e-mail: hdesvaux@cea.fr RID="b" ID="b"URA CNRS/CEA 331  相似文献   

2.
We report initial NMR studies of continuous flow laser-polarized xenon gas, both in unrestricted tubing, and in a model porous media. The study uses Pulsed Gradient Spin Echo-based techniques in the gas-phase, with the aim of obtaining more sophisticated information than just translational self-diffusion coefficients. Pulsed Gradient Echo studies of continuous flow laser-polarized xenon gas in unrestricted tubing indicate clear diffraction minima resulting from a wide distribution of velocities in the flow field. The maximum velocity experienced in the flow can be calculated from this minimum, and is seen to agree with the information from the complete velocity spectrum, or motion propagator, as well as previously published images. The susceptibility of gas flows to parameters such as gas mixture content, and hence viscosity, are observed in experiments aimed at identifying clear structural features from echo attenuation plots of gas flow in porous media. Gas-phase NMR scattering, or position correlation flow-diffraction, previously clearly seen in the echo attenuation data from laser-polarized xenon flowing through a 2 mm glass bead pack is not so clear in experiments using a different gas mixture. A propagator analysis shows most gas in the sample remains close to static, while a small portion moves through a presumably near-unimpeded path at high velocities.  相似文献   

3.
Gas-phase nuclear magnetic resonance (NMR) has great potential as a probe for a variety of interesting physical and biomedical problems that are not amenable to study by water or similar liquid. However, NMR of gases was largely neglected due to the low signal obtained from the thermally polarized gases with very low sample density. The advent of optical pumping techniques for enhancing the polarization of the noble gases3He and129Xe has bought new life to this field, especially in medical imaging where3He lung inhalation imaging is approaching a clinical application. However, there are numerous applications in materials science that also benefit from the use of these gases. We review primarily nonmedical applications of laser-polarized noble gases for both NMR imaging and spectroscopy and highlight progress with examples from our laboratory including high-resolution imaging at millitesla applied field strength and velocity imaging of convective flow. Porous media microstucture has been probed with both thermal and laser-polarized xenon, as xenon is an ideal probe due to low surface interaction with the grains of the porous media.  相似文献   

4.
In this work we present measurements of permeability, effective porosity and tortuosity on a variety of rock samples using NMR/MRI of thermal and laser-polarized gas. Permeability and effective porosity are measured simultaneously using MRI to monitor the inflow of laser-polarized xenon into the rock core. Tortuosity is determined from measurements of the time-dependent diffusion coefficient using thermal xenon in sealed samples. The initial results from a limited number of rocks indicate inverse correlations between tortuosity and both effective porosity and permeability. Further studies to widen the number of types of rocks studied may eventually aid in explaining the poorly understood connection between permeability and tortuosity of rock cores.  相似文献   

5.
In this contribution we report new approaches to the MRI of materials using continuously produced laser-polarized (129)Xe gas. This leads to vastly improved sensitivity and makes new kinds of information available. The hyperpolarized xenon is produced in a continuous flow system that conveniently delivers the xenon at low partial pressure to probes for NMR and MRI experiments. We illustrate applications to the study of micropore and other kinds of void space and show for the first time that with flowing hyperpolarized xenon it is possible to obtain chemical-shift-resolved images in a relatively short time.  相似文献   

6.
The chemical shift sensitivity and significant signal enhancement afforded by laser-polarized 129Xe have motivated the application of 129Xe NMR to biological imaging and spectroscopy. Recent research done by our group has used laser-polarized 129Xe in biomolecular assays that detect ligand-binding events and distinguish protein conformations. The successful application of unfunctionalized and functionalized 129Xe NMR to in vitro biomolecular assays suggests the potential future use of a functionalized xenon biosensor for in vivo imaging.  相似文献   

7.
The porosity in porous silicon was characterized using hyperpolarized (HP) xenon as a probe. HP xenon under conditions of continuous flow allows for the rapid acquisition of xenon NMR spectra that can be used to characterize a variety of materials. Two-dimensional exchange spectroscopy (EXSY) (129)Xe NMR experiments using HP xenon were performed to obtain exchange pathways and rates of xenon mobility between pores of different dimensions within the structure of porous silicon and to the gas phase above the sample. Pore sizes are estimated from chemical shift information and a model for pore geometry is presented.  相似文献   

8.
Introduction  Bythemethodoflaseropticalpumpingspin exchange ,theNMRsignalfrom 1 2 9Xegascanbegreatlyenhanced[1 ] .Theobservedratioofsignaltonoiseisbetterthan 10 0 .Theamplificationfactorofthenuclearspinpolarizationoflaser polarized 1 2 9Xeis 10 4bycomparisonwiththeB…  相似文献   

9.
The NMR signal from the laser-polarized t29 Xe in low-pressure natural xenon gas has been observed with a Bruker WP-80SY NMR spectrometer. The laser-polarized 129 Xe was produced by the method of laser pumping and spin exchange in a magnetic field of 1.87 Tesla. It is obtained experimentally that the nuclear spin relaxation rate 1/T1 of laser-polarized 129Xe are (4.03±1.97)×10-3/see~(2.21±0.78)×10-3/see in the range of the 3.33×103 Pa~8.29×104 Pa Xe gas pressures, the apparent wall relaxation rate 1/Tw* =(1.98±0.18)×10-3/see, and the relaxation rate coefficient C of 133Cs-129Xe spin exchange is (2.81±0.74)×10-16 em3/sec.  相似文献   

10.
We describe an experimental approach that combines multidimensional NMR experiments with a steadily renewed source of laser-polarized 129Xe. Using a continuous flow system to circulate the gas mixture, gas phase NMR signals of laser-polarized 129Xe can be observed with an enhancement of three to four orders of magnitude compared to the equilibrium 129Xe NMR signal. Due to the fact that the gas flow recovers the nonequilibrium 129Xe nuclear spin polarization in 0.2 to 4 s, signal accumulation on the time scale of seconds is feasible, allowing previously inaccessible phase cycling and signal manipulation. Several possible applications of MRI of laser-polarized 129Xe under continuous flow conditions are presented here. The spin density images of capillary tubes demonstrate the feasibility of imaging under continuous flow. Dynamic displacement profiles, measured by a pulsed gradient spin echo experiment, show entry flow properties of the gas passing through a constriction under laminar flow conditions. Further, dynamic displacement profiles of 129Xe, flowing through polyurethane foams with different densities and pore sizes, are presented.  相似文献   

11.
The enhanced spin polarization produced by optical pumping of gaseous rubidium/xenon samples has made possible a number of recent experiments in nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI). Here we report MRI of laser-polarized xenon in the solid phase at low temperature. Due to the high xenon density in the solid phase and the enhanced spin polarization, it is possible to achieve high intensity and spatial resolution of the image. Signals were observed from xenon films solidified onto the glass container walls and not from an enclosed chili pepper.  相似文献   

12.
In a dedicated experimental setup, we directly prepare liquid-state NMR samples containing laser-polarized xenon with nuclear polarization larger than 5% at pressures up to 4 bars. Coating of the NMR tube surface allows us to increase the self-relaxation time of xenon in the gaseous phase to approximately 4.5 hours. Using a modified SPINOE pulse sequence, we present the first direct detection of a regioselective proton signal enhancement of a molecule -cyclodextrin) dissolved in water resulting from cross-polarization between laser-polarized xenon and protons. Received 16 March 2000 and Received in final form 22 May 2000  相似文献   

13.
Using a novel NMR scheme we observed persistence in 1D gas diffusion. Analytical approximations and numerical simulations have indicated that for an initially random array of spins undergoing diffusion, the probability p(t) that the average spin magnetization in a given region has not changed sign (i.e., "persists") up to time t follows a power law t(-straight theta), where straight theta depends on the dimensionality of the system. Using laser-polarized 129Xe gas, we prepared an initial "quasirandom" 1D array of spin magnetization and then monitored the ensemble's evolution due to diffusion using real-time NMR imaging. Our measurements are consistent with analytical and numerical predictions of straight theta approximately 0.12.  相似文献   

14.
We show that gas diffusion nuclear magnetic resonance (GD-NMR) provides a powerful technique for probing the structure of porous media. In random packs of glass beads, using both laser-polarized and thermally polarized xenon gas, we find that GD-NMR can accurately measure the pore space surface-area-to-volume ratio, S/V rho, and the tortuosity, alpha (the latter quantity being directly related to the system's transport properties). We also show that GD-NMR provides a good measure of the tortuosity of sandstone and complex carbonate rocks.  相似文献   

15.
We report initial NMR studies of gas dynamics in a particle bed fluidized by laser-polarized xenon (129Xe) gas. We have made preliminary measurements of two important characteristics: gas exchange between the bubble and emulsion phases and the gas velocity distribution in the bed. We used T2* contrast to differentiate the bubble and emulsion phases by choosing solid particles with large magnetic susceptibility. Experimental tests demonstrated that this method was successful in eliminating 129Xe magnetization in the emulsion phase, which enabled us to observe the time dependence of the bubble magnetization. By employing the pulsed field gradient method, we also measured the gas velocity distribution within the bed. These results clearly show the onset of bubbling and can be used to deduce information about gas and particle motion in the fluidized bed.  相似文献   

16.
The signal-to-noise ratio of nuclear magnetic resonance signals from laser-polarized 129Xe gas was investigated at 8.5 mT and compared to that of signals acquired at 1.88 T. A dedicated 8.5 mT resistive magnet was constructed and used to acquire the signals. The SNR for 1 atm of xenon gas with a polarization of 1% was measured to be 1900 at a field of 1.88 T. Under identical acquisition conditions, the SNR at 8.5 mT was about 60 (or 32 times lower). After measuring and including all of the electrical factors of the detection systems at each field strength, theory indicates the SNR value measured at 8.5m T should be about 36 times lower. Considering the widely differing frequencies and completely different detection systems the agreement is quite good and indicates that extrapolating the frequency dependence of the SNR down to very low fields does work as long as the detection system parameters are carefully accounted for. This work suggests that magnetic resonance (MR) imaging is achievable on ideal gas samples at 8.5 mT using laser-polarized 129Xe gas down to the practical resolution limit of about 0.5mm, although the SNR will be very low (approximately 1.4). The feasibility of imaging small animals at 8.5 mT is discussed and it is suggested that a field of about 50 mT is required.  相似文献   

17.
We have visualized the melting and dissolution processes of xenon (Xe) ice into different solvents using the methods of nuclear magnetic resonance (NMR) spectroscopy, imaging, and time resolved spectroscopic imaging by means of hyperpolarized 129Xe. Starting from the initial condition of a hyperpolarized solid Xe layer frozen on top of an ethanol (ethanol/water) ice block we measured the Xe phase transitions as a function of time and temperature. In the pure ethanol sample, pieces of Xe ice first fall through the viscous ethanol to the bottom of the sample tube and then form a thin layer of liquid Xe/ethanol. The xenon atoms are trapped in this liquid layer up to room temperature and keep their magnetization over a time period of 11 min. In the ethanol/water mixture (80 vol%/20%), most of the polarized Xe liquid first stays on top of the ethanol/water ice block and then starts to penetrate into the pores and cracks of the ethanol/water ice block. In the final stage, nearly all the Xe polarization is in the gas phase above the liquid and trapped inside the pores. NMR spectra of homogeneous samples of pure ethanol containing thermally polarized Xe and the spectroscopic images of the melting process show that very high concentrations of hyperpolarized Xe (about half of the density of liquid Xe) can be stored or delivered in pure ethanol.  相似文献   

18.
The presence of highly concentrated dissolved laser-polarized xenon (approximately 1mol/L, polarization up to 0.2) induces numerous effects on proton and xenon NMR spectra. We show that the proton signal enhancements due to (129)Xe-(1)H cross-relaxation (SPINOE) and overall shifts of the proton resonances due to the average dipolar shift created by the intense xenon magnetization are correlated. Protons behave as very useful sensors of the xenon magnetization. Indeed the xenon resonances exhibit many features such as superimposition of narrow lines on the main resonance due to clustering effects, or such as a polarization-dependent line broadening that is tentatively assigned to the effects of temperature fluctuations that decorrelate some distant dipolar field effects from local interactions, transforming xenon spins from "like" to "unlike" spins. These spectral features make difficult the determination of the average dipolar field by means of the xenon resonance but have interesting consequences on the heteronuclear polarization transfer experiment in Hartmann-Hahn conditions (SPIDER).  相似文献   

19.
Pulsed-field-gradient NMR techniques are demonstrated for measurements of time-dependent gas diffusion. The standard PGSE technique and variants, applied to a free gas mixture of thermally polarized xenon and O2, are found to provide a reproducible measure of the xenon diffusion coefficient (5.71 × 10−6m2s−1for 1 atm of pure xenon), in excellent agreement with previous, non-NMR measurements. The utility of pulsed-field-gradient NMR techniques is demonstrated by the first measurement of time-dependent (i.e., restricted) gas diffusion inside a porous medium (a random pack of glass beads), with results that agree well with theory. Two modified NMR pulse sequences derived from the PGSE technique (named the Pulsed Gradient Echo, or PGE, and the Pulsed Gradient Multiple Spin Echo, or PGMSE) are also applied to measurements of time dependent diffusion of laser polarized xenon gas, with results in good agreement with previous measurements on thermally polarized gas. The PGMSE technique is found to be superior to the PGE method, and to standard PGSE techniques and variants, for efficiently measuring laser polarized noble gas diffusion over a wide range of diffusion times.  相似文献   

20.
A sample of polystyrene beads, 18 μm in diameter, has been sealed in an NMR tube under 10 atm of xenon gas. Two dimensional,129Xe NMR spectra show cross peaks between the resonances corresponding to xenon in the free gas and the sorbed state, indicating that appreciable exchange occurs during the mixing time of the NMR experiment. Selective saturation of the free gas resonance attenuates the integrated intensity of the sorbed xenon resonance as a function of saturation time, thus allowing the accurate measurement of the exchange rates between the gas and the sorbed states. A model has been developed using a slightly modified form of Crank’s treatment of diffusion in a sphere which allows for the accurate determination of the diffusion coefficient for xenon in the sorbed state. The diffusion coefficient for xenon in polystyrene at 25°C is determined to be 2.9·10?9 cm2/s.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号