首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
For a finite undirected graph G=(V,E) and positive integer k≥1, an edge set ME is a distance-k matching if the pairwise distance of edges in M is at least k in G. For k=1, this gives the usual notion of matching in graphs, and for general k≥1, distance-k matchings were called k-separated matchings by Stockmeyer and Vazirani. The special case k=2 has been studied under the names induced matching (i.e., a matching which forms an induced subgraph in G) by Cameron and strong matching by Golumbic and Laskar in various papers.Finding a maximum induced matching is NP-complete even on very restricted bipartite graphs and on claw-free graphs but it can be done efficiently on various classes of graphs such as chordal graphs, based on the fact that an induced matching in G corresponds to an independent vertex set in the square L(G)2 of the line graph L(G) of G which, by a result of Cameron, is chordal for any chordal graph G.We show that, unlike for k=2, for a chordal graph G, L(G)3 is not necessarily chordal, and finding a maximum distance-3 matching, and more generally, finding a maximum distance-(2k+1) matching for k≥1, remains NP-complete on chordal graphs. For strongly chordal graphs and interval graphs, however, the maximum distance-k matching problem can be solved in polynomial time for every k≥1. Moreover, we obtain various new results for maximum induced matchings on subclasses of claw-free graphs.  相似文献   

2.
A set of vertices D of a graph G is geodetic if every vertex of G lies on a shortest path between two not necessarily distinct vertices in D. The geodetic number of G is the minimum cardinality of a geodetic set of G.We prove that it is NP-complete to decide for a given chordal or chordal bipartite graph G and a given integer k whether G has a geodetic set of cardinality at most k. Furthermore, we prove an upper bound on the geodetic number of graphs without short cycles and study the geodetic number of cographs, split graphs, and unit interval graphs.  相似文献   

3.
The boxicity of a graph G is defined as the minimum integer k such that G is an intersection graph of axis-parallel k-dimensional boxes. Chordal bipartite graphs are bipartite graphs that do not contain an induced cycle of length greater than 4. It was conjectured by Otachi, Okamoto and Yamazaki that chordal bipartite graphs have boxicity at most 2. We disprove this conjecture by exhibiting an infinite family of chordal bipartite graphs that have unbounded boxicity.  相似文献   

4.
Golumbic, Kaplan, and Shamir [Graph sandwich problems, J. Algorithms 19 (1995) 449-473], in their paper on graph sandwich problems published in 1995, left the status of the sandwich problems for strongly chordal graphs and chordal bipartite graphs open. It was recently shown [C.M.H. de Figueiredo, L. Faria, S. Klein, R. Sritharan, On the complexity of the sandwich problems for strongly chordal graphs and chordal bipartite graphs, Theoret. Comput. Sci., accepted for publication] that the sandwich problem for strongly chordal graphs is NP-complete. We show that given graph G with a proper vertex coloring c, determining whether there is a supergraph of G that is chordal bipartite and also is properly colored by c is NP-complete. This implies that the sandwich problem for chordal bipartite graphs is also NP-complete.  相似文献   

5.
In this work we introduce the class of graphs with bounded induced distance of order k, (BID(k) for short). A graph G belongs to BID(k) if the distance between any two nodes in every connected induced subgraph of G is at most k times their distance in G. These graphs can model communication networks in which node failures may occur: at a given time, if sender and receiver are still connected, any message can be delivered through a path (that, due to node failures, could be longer than the shortest one) the length of which is at most k times the best possible. In this work we first provide two characterizations of graphs belonging to BID(k): one based on the stretch number (a new invariant introduced here), and the other based on cycle-chord conditions. After that, we investigate classes with order k⩽2. In this context, we note that the class BID(1) is the well known class of distance-hereditary graphs, and we show that 3/2 is a lower bound for the order k of graphs that are not distance-hereditary. Then, we characterize graphs in BID(3/2) by means of forbidden induced subgraphs, and we also show that graphs in BID(2) have a more complex characterization. We prove that the recognition problem for the generic class BID(k) is Co-NP-complete. Finally, we show that the split composition can be used to generate graphs in BID(k).  相似文献   

6.
We introduce the notion of the boundary clique and the k-overlap clique graph and prove the following: Every incomplete chordal graph has two nonadjacent simplicial vertices lying in boundary cliques. An incomplete chordal graph G is k-connected if and only if the k-overlap clique graph gk(G) is connected. We give an algorithm to construct a clique tree of a connected chordal graph and characterize clique trees of connected chordal graphs using the algorithm.  相似文献   

7.
A k-cluster in a graph is an induced subgraph on k vertices which maximizes the number of edges. Both the k-cluster problem and the k-dominating set problem are NP-complete for graphs in general. In this paper we investigate the complexity status of these problems on various sub-classes of perfect graphs. In particular, we examine comparability graphs, chordal graphs, bipartite graphs, split graphs, cographs and κ-trees. For example, it is shown that the k-cluster problem is NP-complete for both bipartite and chordal graphs and the independent k-dominating set problem is NP-complete for bipartite graphs. Furthermore, where the k-cluster problem is polynomial we study the weighted and connected versions as well. Similarly we also look at the minimum k-dominating set problem on families which have polynomial k-dominating set algorithms.  相似文献   

8.
Both the line graph and the clique graph are defined as intersection graphs of certain families of complete subgraphs of a graph. We generalize this concept. By a k-edge of a graph we mean a complete subgraph with k vertices or a clique with fewer than k vertices. The k-edge graph Δk(G) of a graph G is defined as the intersection graph of the set of all k-edges of G. The following three problems are investigated for k-edge graphs. The first is the characterization problem. Second, sets of graphs closed under the k-edge graph operator are found. The third problem is the question of convergence: What happens to a graph if we take iterated k-edge graphs?  相似文献   

9.
Let Y be a subset of real numbers. A Y-dominating function of a graph G=(V,E) is a function f:VY such that for all vertices vV, where NG[v]={v}∪{u|(u,v)∈E}. Let for any subset S of V and let f(V) be the weight of f. The Y-domination problem is to find a Y-dominating function of minimum weight for a graph G=(V,E). In this paper, we study the variations of Y-domination such as {k}-domination, k-tuple domination, signed domination, and minus domination for some classes of graphs. We give formulas to compute the {k}-domination, k-tuple domination, signed domination, and minus domination numbers of paths, cycles, n-fans, n-wheels, n-pans, and n-suns. Besides, we present a unified approach to these four problems on strongly chordal graphs. Notice that trees, block graphs, interval graphs, and directed path graphs are subclasses of strongly chordal graphs. This paper also gives complexity results for the problems on doubly chordal graphs, dually chordal graphs, bipartite planar graphs, chordal bipartite graphs, and planar graphs.  相似文献   

10.
In this paper, we show that the clique-transversal number τC(G) and the clique-independence number αC(G) are equal for any distance-hereditary graph G. As a byproduct of proving that τC(G)=αC(G), we give a linear-time algorithm to find a minimum clique-transversal set and a maximum clique-independent set simultaneously for distance-hereditary graphs.  相似文献   

11.
We introduce the notion of k-hyperclique complexes, i.e., the largest simplicial complexes on the set [n] with a fixed k-skeleton. These simplicial complexes are a higher-dimensional analogue of clique (or flag) complexes (case k = 2) and they are a rich new class of simplicial complexes. We show that Dirac’s theorem on chordal graphs has a higher-dimensional analogue in which graphs and clique complexes get replaced, respectively, by simplicial matroids and k-hyperclique complexes. We prove also a higher-dimensional analogue of Stanley’s reformulation of Dirac’s theorem on chordal graphs.   相似文献   

12.
The b-chromatic number of a graph G is the largest integer k such that G has a coloring of the vertices in k color classes such that every color class contains a vertex that has a neighbour in all other color classes. We characterize the class of chordal graphs for which the b-chromatic number is equal to the chromatic number for every induced subgraph. This research was supported by Algerian-French program CMEP/Tassili 05 MDU 639.  相似文献   

13.
Let G be a finite simple graph. Let SV(G), its closed interval I[S] is the set of all vertices lying on shortest paths between any pair of vertices of S. The set S is convex if I[S]=S. In this work we define the concept of a convex partition of graphs. If there exists a partition of V(G) into p convex sets we say that G is p-convex. We prove that it is NP-complete to decide whether a graph G is p-convex for a fixed integer p≥2. We show that every connected chordal graph is p-convex, for 1≤pn. We also establish conditions on n and k to decide if the k-th power of a cycle Cn is p-convex. Finally, we develop a linear-time algorithm to decide if a cograph is p-convex.  相似文献   

14.
In this work we introduce, characterize, and provide algorithmic results for (k,+)-distance-hereditary graphs, k0. These graphs can be used to model interconnection networks with desirable connectivity properties; a network modeled as a (k,+)-distance-hereditary graph can be characterized as follows: if some nodes have failed, as long as two nodes remain connected, the distance between these nodes in the faulty graph is bounded by the distance in the non-faulty graph plus an integer constant k. The class of all these graphs is denoted by DH(k,+). By varying the parameter k, classes DH(k,+) include all graphs and form a hierarchy that represents a parametric extension of the well-known class of distance-hereditary graphs.  相似文献   

15.
In this paper we introduce the concept of fair reception of a graph which is related to its domination number. We prove that all graphs G with a fair reception of size γ(G) satisfy Vizing's conjecture on the domination number of Cartesian product graphs, by which we extend the well‐known result of Barcalkin and German concerning decomposable graphs. Combining our concept with a result of Aharoni, Berger and Ziv, we obtain an alternative proof of the theorem of Aharoni and Szabó that chordal graphs satisfy Vizing's conjecture. A new infinite family of graphs that satisfy Vizing's conjecture is also presented. © 2009 Wiley Periodicals, Inc. J Graph Theory 61: 45‐54, 2009  相似文献   

16.
The oriented diameter of a bridgeless connected undirected (bcu) graph G is the smallest diameter among all the diameters of strongly connected orientations of G. We study algorithmic aspects of determining the oriented diameter of a chordal graph. We (a) construct a linear‐time approximation algorithm that, for a given chordal bcu graph G, finds a strongly connected orientation of G with diameter at most one plus twice the oriented diameter of G; (b) prove that, for every k ≥ 2 and k # 3, to decide whether a chordal (split for k = 2) bcu graph G admits an orientation of diameter k is NP‐complete; (c) show that, unless P = NP, there is neither a polynomial‐time absolute approximation algorithm nor an α‐approximation algorithm that computes the oriented diameter of a bcu chordal graph for α < . © 2004 Wiley Periodicals, Inc. J Graph Theory 45: 255–269, 2004  相似文献   

17.
Every planar triangulation G has the property that each induced cycle C of length at least 4 in G separates G, but no proper subgraph of C does. This property is trivially shared by all chordal graphs since these contain no such cycles at all. We ask to what extent maximally planar graphs and chordal graphs are unique with this property — or how much larger the class of graphs is that it determines. The answer is given in the form of a characterization of this class in terms of the simplicial decompositions of its elements. The theory of simplicial decompositions appears to be a very interesting, but still largely unexploited, method of characterization in graph theory, which seems tailor-made for problems like the one discussed.  相似文献   

18.
We present polynomial algorithms to locate minimum weight dominating sets and independent dominating sets in strongly chordal graphs. We utilize an intimate relationship between strongly chordal graphs and totally balanced matrices to show that the domatic number achieves its theoretical lower bound in strongly chordal graphs and to efficiently solve certain optimization problems for totally balanced matrices.  相似文献   

19.
The problem of when a recursive graph has a recursive k-coloring has been extensively studied by Bean, Schmerl, Kierstead, Remmel, and others. In this paper, we study the polynomial time analogue of that problem. We develop a number of negative and positive results about colorings of polynomial time graphs. For example, we show that for any recursive graph G and for any k, there is a polynomial time graph G′ whose vertex set is {0,1}* such that there is an effective degree preserving correspondence between the set of k-colorings of G and the set of k-colorings of G′ and hence there are many examples of k-colorable polynomial time graphs with no recursive k-colorings. Moreover, even though every connected 2-colorable recursive graph is recursively 2-colorable, there are connected 2-colorable polynomial time graphs which have no primitive recursive 2-coloring. We also give some sufficient conditions which will guarantee that a polynomial time graph has a polynomial time or exponential time coloring.  相似文献   

20.
In 1990, Acharya and Hegde introduced the concept of strongly k-indexable graphs: A (p,q)-graph G=(V,E) is said to be strongly k-indexable if its vertices can be assigned distinct numbers 0,1,2,…,p−1 so that the values of the edges, obtained as the sums of the numbers assigned to their end vertices form an arithmetic progression k,k+1,k+2,…,k+(q−1). When k=1, a strongly k-indexable graph is simply called a strongly indexable graph. In this paper, we report some results on strongly k-indexable graphs and give an application of strongly k-indexable graphs to plane geometry, viz; construction of polygons of same internal angles and sides of distinct lengths.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号