首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We study some properties of a $ \mathfrak{c} $ \mathfrak{c} -universal semilattice $ \mathfrak{A} $ \mathfrak{A} with the cardinality of the continuum, i.e., of an upper semilattice of m-degrees. In particular, it is shown that the quotient semilattice of such a semilattice modulo any countable ideal will be also $ \mathfrak{c} $ \mathfrak{c} -universal. In addition, there exists an isomorphism $ \mathfrak{A} $ \mathfrak{A} such that $ {\mathfrak{A} \mathord{\left/ {\vphantom {\mathfrak{A} {\iota \left( \mathfrak{A} \right)}}} \right. \kern-\nulldelimiterspace} {\iota \left( \mathfrak{A} \right)}} $ {\mathfrak{A} \mathord{\left/ {\vphantom {\mathfrak{A} {\iota \left( \mathfrak{A} \right)}}} \right. \kern-\nulldelimiterspace} {\iota \left( \mathfrak{A} \right)}} will be also $ \mathfrak{c} $ \mathfrak{c} -universal. Furthermore, a property of the group of its automorphisms is obtained. To study properties of this semilattice, the technique and methods of admissible sets are used. More exactly, it is shown that the semilattice of mΣ-degrees $ L_{m\Sigma }^{\mathbb{H}\mathbb{F}\left( S \right)} $ L_{m\Sigma }^{\mathbb{H}\mathbb{F}\left( S \right)} on the hereditarily finite superstructure $ \mathbb{H}\mathbb{F} $ \mathbb{H}\mathbb{F} (S) over a countable set S will be a $ \mathfrak{c} $ \mathfrak{c} -universal semilattice with the cardinality of the continuum.  相似文献   

2.
Some integral inequalities for the polar derivative of a polynomial   总被引:1,自引:0,他引:1  
If P(z) is a polynomial of degree n which does not vanish in |z| 1,then it is recently proved by Rather [Jour.Ineq.Pure and Appl.Math.,9 (2008),Issue 4,Art.103] that for every γ 0 and every real or complex number α with |α|≥ 1,{∫02π |D α P(e iθ)| γ dθ}1/γ≤ n(|α| + 1)C γ{∫02π|P(eiθ)| γ dθ}1/γ,C γ ={1/2π∫0 2π|1+eiβ|γdβ}-1/γ,where D α P(z) denotes the polar derivative of P(z) with respect to α.In this paper we prove a result which not only provides a refinement of the above inequality but also gives a result of Aziz and Dawood [J.Approx.Theory,54 (1988),306-313] as a special case.  相似文献   

3.
Let Θ be a bounded open set in ℝ n , n ⩾ 2. In a well-known paper Indiana Univ. Math. J., 20, 1077–1092 (1971) Moser found the smallest value of K such that
$ \sup \left\{ {\int_\Omega {\exp \left( {\left( {\frac{{\left| {f(x)} \right|}} {K}} \right)^{{n \mathord{\left/ {\vphantom {n {(n - 1)}}} \right. \kern-\nulldelimiterspace} {(n - 1)}}} } \right):f \in W_0^{1,n} (\Omega ),\left\| {\nabla f} \right\|_{L^n } \leqslant 1} } \right\} < \infty $ \sup \left\{ {\int_\Omega {\exp \left( {\left( {\frac{{\left| {f(x)} \right|}} {K}} \right)^{{n \mathord{\left/ {\vphantom {n {(n - 1)}}} \right. \kern-\nulldelimiterspace} {(n - 1)}}} } \right):f \in W_0^{1,n} (\Omega ),\left\| {\nabla f} \right\|_{L^n } \leqslant 1} } \right\} < \infty   相似文献   

4.
By means of the Hoheisel—Montgomery prime number theorem it is shown that for every α≥1 the inequality $$|(\sigma (n)/n) - \alpha | \leqslant {1 \mathord{\left/ {\vphantom {1 {n^{({2 \mathord{\left/ {\vphantom {2 5}} \right. \kern-\nulldelimiterspace} 5}) - \varepsilon } }}} \right. \kern-\nulldelimiterspace} {n^{({2 \mathord{\left/ {\vphantom {2 5}} \right. \kern-\nulldelimiterspace} 5}) - \varepsilon } }}(\varepsilon > 0,\sigma (n) = \sum\limits_{d/n} d )$$ has infinitely many solutionsnN. It is highly probable that the exponent 2/5 can be replaced by 1.  相似文献   

5.
The problem of approximating the Pareto frontier (nondominated frontier) of the feasible set of criteria vectors in nonlinear multicriteria optimization problems is considered. The problem is solved by approximating the Edgeworth-Pareto hull (EPH), i.e., the maximum set with the same Pareto frontier as the original feasible set of criteria vectors. An EPH approximation method is studied that is based on the statistical accuracy estimation of the current approximation and on adaptive supplement of a metric net whose EPH approximates the desired set. The convergence of the method is proved, estimates for the convergence rate are obtained, and the efficiency of the method is studied in the case of a compact feasible set and continuous criteria functions. It is shown that the convergence rate of the method with respect to the number k of iterations is no lower than $ o\left( {k^{{1 \mathord{\left/ {\vphantom {1 {\overline {dm} Y}}} \right. \kern-\nulldelimiterspace} {\overline {dm} Y}}} } \right) $ o\left( {k^{{1 \mathord{\left/ {\vphantom {1 {\overline {dm} Y}}} \right. \kern-\nulldelimiterspace} {\overline {dm} Y}}} } \right) , where $ \overline {dm} Y $ \overline {dm} Y is the upper metric dimension of the feasible set of criteria vectors.  相似文献   

6.
The trigonometric polynomials of Fejér and Young are defined by $S_n (x) = \sum\nolimits_{k = 1}^n {\tfrac{{\sin (kx)}} {k}}$S_n (x) = \sum\nolimits_{k = 1}^n {\tfrac{{\sin (kx)}} {k}} and $C_n (x) = 1 + \sum\nolimits_{k = 1}^n {\tfrac{{\cos (kx)}} {k}}$C_n (x) = 1 + \sum\nolimits_{k = 1}^n {\tfrac{{\cos (kx)}} {k}}, respectively. We prove that the inequality $\left( {{1 \mathord{\left/ {\vphantom {1 9}} \right. \kern-\nulldelimiterspace} 9}} \right)\sqrt {15} \leqslant {{C_n \left( x \right)} \mathord{\left/ {\vphantom {{C_n \left( x \right)} {S_n \left( x \right)}}} \right. \kern-\nulldelimiterspace} {S_n \left( x \right)}}$\left( {{1 \mathord{\left/ {\vphantom {1 9}} \right. \kern-\nulldelimiterspace} 9}} \right)\sqrt {15} \leqslant {{C_n \left( x \right)} \mathord{\left/ {\vphantom {{C_n \left( x \right)} {S_n \left( x \right)}}} \right. \kern-\nulldelimiterspace} {S_n \left( x \right)}} holds for all n ≥ 2 and x ∈ (0, π). The lower bound is sharp.  相似文献   

7.
Considering the positive d-dimensional lattice point Z + d (d ≥ 2) with partial ordering ≤, let {X k: kZ + d } be i.i.d. random variables taking values in a real separable Hilbert space (H, ‖ · ‖) with mean zero and covariance operator Σ, and set $ S_n = \sum\limits_{k \leqslant n} {X_k } $ S_n = \sum\limits_{k \leqslant n} {X_k } , nZ + d . Let σ i 2, i ≥ 1, be the eigenvalues of Σ arranged in the non-increasing order and taking into account the multiplicities. Let l be the dimension of the corresponding eigenspace, and denote the largest eigenvalue of Σ by σ 2. Let logx = ln(xe), x ≥ 0. This paper studies the convergence rates for $ \sum\limits_n {\frac{{\left( {\log \log \left| n \right|} \right)^b }} {{\left| n \right|\log \left| n \right|}}} P\left( {\left\| {S_n } \right\| \geqslant \sigma \varepsilon \sqrt {2\left| n \right|\log \log \left| n \right|} } \right) $ \sum\limits_n {\frac{{\left( {\log \log \left| n \right|} \right)^b }} {{\left| n \right|\log \left| n \right|}}} P\left( {\left\| {S_n } \right\| \geqslant \sigma \varepsilon \sqrt {2\left| n \right|\log \log \left| n \right|} } \right) . We show that when l ≥ 2 and b > −l/2, E[‖X2(log ‖X‖) d−2(log log ‖X‖) b+4] < ∞ implies $ \begin{gathered} \mathop {\lim }\limits_{\varepsilon \searrow \sqrt {d - 1} } (\varepsilon ^2 - d + 1)^{b + l/2} \sum\limits_n {\frac{{\left( {\log \log \left| n \right|} \right)^b }} {{\left| n \right|\log \left| n \right|}}P\left( {\left\| {S_n } \right\| \geqslant \sigma \varepsilon \sqrt 2 \left| n \right|\log \log \left| n \right|} \right)} \hfill \\ = \frac{{K(\Sigma )(d - 1)^{\frac{{l - 2}} {2}} \Gamma (b + l/2)}} {{\Gamma (l/2)(d - 1)!}} \hfill \\ \end{gathered} $ \begin{gathered} \mathop {\lim }\limits_{\varepsilon \searrow \sqrt {d - 1} } (\varepsilon ^2 - d + 1)^{b + l/2} \sum\limits_n {\frac{{\left( {\log \log \left| n \right|} \right)^b }} {{\left| n \right|\log \left| n \right|}}P\left( {\left\| {S_n } \right\| \geqslant \sigma \varepsilon \sqrt 2 \left| n \right|\log \log \left| n \right|} \right)} \hfill \\ = \frac{{K(\Sigma )(d - 1)^{\frac{{l - 2}} {2}} \Gamma (b + l/2)}} {{\Gamma (l/2)(d - 1)!}} \hfill \\ \end{gathered} , where Γ(·) is the Gamma function and $ \prod\limits_{i = l + 1}^\infty {((\sigma ^2 - \sigma _i^2 )/\sigma ^2 )^{ - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} } $ \prod\limits_{i = l + 1}^\infty {((\sigma ^2 - \sigma _i^2 )/\sigma ^2 )^{ - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} } .  相似文献   

8.
LetB denote the closure of a bounded open set of points inE n with Jordan content |B|>0 and letc>0 be constant. Typical of the expressions considered is $$M(N,c) = \max _{\left\{ {x_j } \right\}} \min _{x \in B} \sum\limits_{j = 1}^N {\left| {x - x_j } \right|^{ - c} } ,x_j \in E^n$$ Together with its analogs and extensions, the problem forc has a long history, associated with the names of Fekete, Leja, Pólya, Szegö, Frostman and Carleson, to mention just a few. It involves the notions of generalized capacity, transfinite diameter, and equilibrium potential. Here we consider the casec≧n and its extensions, for which the prior history seems less comprehensive. Illustrative of the results obtained are the three equations $$\mathop {\lim }\limits_{N \to \infty } \frac{{M(N,n)}}{{N\log N}} = \frac{{\omega (n)}}{{\left| B \right|}},\mathop {\lim }\limits_{N \to \infty } \frac{{M(N,c)}}{{N^{{c \mathord{\left/ {\vphantom {c n}} \right. \kern-\nulldelimiterspace} n}} }} = \frac{{L(n,c)}}{{\left| B \right|^{{c \mathord{\left/ {\vphantom {c n}} \right. \kern-\nulldelimiterspace} n}} }},\mathop {\lim }\limits_{c \to \infty } L(n,c)^{{1 \mathord{\left/ {\vphantom {1 c}} \right. \kern-\nulldelimiterspace} c}} = \mathop {\lim }\limits_{N \to \infty } \frac{{\left( {\left| B \right|/N} \right)^{{1 \mathord{\left/ {\vphantom {1 n}} \right. \kern-\nulldelimiterspace} n}} }}{{\varrho (N)}}$$ In the firstc=n and ω (n) is the volume of the unit ball. In the secondc>n and existence of the limit is asserted, 0<L(n,c)<∞. In the third, ? (N) is the smallest value such thatN spheres of radius ? (N) can coverB. The results would be unchanged if we requiredx j ∈B instead ofx j ∈E n in the definition ofM(N, c).  相似文献   

9.
We suggest a new approach to studying the isochronism of the system
${{dx} \mathord{\left/ {\vphantom {{dx} {dt}}} \right. \kern-\nulldelimiterspace} {dt}} = - y + p_n (x,y),{{dy} \mathord{\left/ {\vphantom {{dy} {dt}}} \right. \kern-\nulldelimiterspace} {dt}} = x + q_n (x,y),$
where p n and q n are homogeneous polynomials of degree n. This approach is based on the normal form
${{dX} \mathord{\left/ {\vphantom {{dX} {dt}}} \right. \kern-\nulldelimiterspace} {dt}} = - Y + XS(X,Y),{{dY} \mathord{\left/ {\vphantom {{dY} {dt}}} \right. \kern-\nulldelimiterspace} {dt}} = X + YS(X,Y)$
and its analog in polar coordinates. We prove a theorem on sufficient conditions for the strong isochronism of a center and a focus for the reduced system and obtain examples of centers with strong isochronism of degrees n = 4, 5. The present paper is the first to give examples of foci with strong isochronism for the system in question.
  相似文献   

10.
The nonparametric regression problem has the objective of estimating conditional expectation. Consider the model $$Y = R(X) + Z$$ , where the random variableZ has mean zero and is independent ofX. The regression functionR(x) is the conditional expectation ofY givenX = x. For an estimator of the form $$R_n (x) = \sum\limits_{i = 1}^n {Y_i K{{\left[ {{{\left( {x - X_i } \right)} \mathord{\left/ {\vphantom {{\left( {x - X_i } \right)} {c_n }}} \right. \kern-\nulldelimiterspace} {c_n }}} \right]} \mathord{\left/ {\vphantom {{\left[ {{{\left( {x - X_i } \right)} \mathord{\left/ {\vphantom {{\left( {x - X_i } \right)} {c_n }}} \right. \kern-\nulldelimiterspace} {c_n }}} \right]} {\sum\limits_{i = 1}^n {K\left[ {{{\left( {x - X_i } \right)} \mathord{\left/ {\vphantom {{\left( {x - X_i } \right)} {c_n }}} \right. \kern-\nulldelimiterspace} {c_n }}} \right]} }}} \right. \kern-\nulldelimiterspace} {\sum\limits_{i = 1}^n {K\left[ {{{\left( {x - X_i } \right)} \mathord{\left/ {\vphantom {{\left( {x - X_i } \right)} {c_n }}} \right. \kern-\nulldelimiterspace} {c_n }}} \right]} }}} $$ , we obtain the rate of strong uniform convergence $$\mathop {\sup }\limits_{x\varepsilon C} \left| {R_n (x) - R(x)} \right|\mathop {w \cdot p \cdot 1}\limits_ = o({{n^{{1 \mathord{\left/ {\vphantom {1 {(2 + d)}}} \right. \kern-\nulldelimiterspace} {(2 + d)}}} } \mathord{\left/ {\vphantom {{n^{{1 \mathord{\left/ {\vphantom {1 {(2 + d)}}} \right. \kern-\nulldelimiterspace} {(2 + d)}}} } {\beta _n \log n}}} \right. \kern-\nulldelimiterspace} {\beta _n \log n}}),\beta _n \to \infty $$ . HereX is ad-dimensional variable andC is a suitable subset ofR d .  相似文献   

11.
LetL(x) denote the number of square-full integers not exceedingx. It is well-known that $$L\left( x \right) \sim \frac{{\zeta \left( {{3 \mathord{\left/ {\vphantom {3 2}} \right. \kern-\nulldelimiterspace} 2}} \right)}}{{\zeta \left( 3 \right)}}x^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} + \frac{{\zeta \left( {{2 \mathord{\left/ {\vphantom {2 3}} \right. \kern-\nulldelimiterspace} 3}} \right)}}{{\zeta \left( 2 \right)}}x^{{1 \mathord{\left/ {\vphantom {1 3}} \right. \kern-\nulldelimiterspace} 3}} ,$$ whereζ(s) denotes the Riemann Zeta function, LetΔ(x) denote the error function in the asymptotic formula forL(x). On the assumption of the Riemann hypothesis (R.H.), it is known that $$\Delta x = O\left( {x^{13/81 + 8} } \right)$$ for everyε > 0. In this paper, we prove on the assumption of R.H. that $$\frac{1}{x}\int\limits_x^1 {\left| {\Delta \left( t \right)} \right|dt = O\left( {x^{1/10 + ^8 } } \right)} .$$ In fact, we prove a more general result. We conjecture that $$\Delta x = O\left( {x^{1/10 + ^8 } } \right)$$ under the assumption of the R.H.  相似文献   

12.
Let X, X1 , X2 , . . . be i.i.d. random variables, and set Sn = X1 +···+Xn , Mn = maxk≤n |Sk|, n ≥1. Let an = o( (n)(1/2)/logn). By using the strong approximation, we prove that, if EX = 0, VarX = σ2 0 and E|X| 2+ε ∞ for some ε 0, then for any r 1, lim ε1/(r-1)(1/2) [ε-2-(r-1)]∞∑n=1 nr-2 P{Mn ≤εσ (π2n/(8log n))(1/2) + an } = 4/π . We also show that the widest a n is o( n(1/2)/logn).  相似文献   

13.
LetL(x) denote the number of square full integers ≤x. By a square-full integer, we mean a positive integer all of whose prime factors have multiplicity at least two. It is well known that $$\left. {L(x)} \right| \sim \frac{{\zeta ({3 \mathord{\left/ {\vphantom {3 2}} \right. \kern-\nulldelimiterspace} 2})}}{{\zeta (3)}}x^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} + \frac{{\zeta ({2 \mathord{\left/ {\vphantom {2 3}} \right. \kern-\nulldelimiterspace} 3})}}{{\zeta (2)}}x^{{1 \mathord{\left/ {\vphantom {1 3}} \right. \kern-\nulldelimiterspace} 3}} ,$$ where ζ(s) denotes the Riemann Zeta function. Let Δ(x) denote the error function in the asymptotic formula forL(x). On the basis of the Riemann hypothesis (R.H.), it is known that \(\Delta (x) = O(x^{\tfrac{{13}}{{81}} + \varepsilon } )\) for every ε>0. In this paper, we prove the following results on the assumption of R.H.: (1) $$\frac{1}{x}\int\limits_1^x {\Delta (t)dt} = O(x^{\tfrac{1}{{12}} + \varepsilon } ),$$ (2) $$\int\limits_1^x {\frac{{\Delta (t)}}{t}\log } ^{v - 1} \left( {\frac{x}{t}} \right) = O(x^{\tfrac{1}{{12}} + \varepsilon } )$$ for any integer ν≥1. In fact, we prove some general results and deduce the above from them. On the basis of (1) and (2) above, we conjecture that \(\Delta (x) = O(x^{{1 \mathord{\left/ {\vphantom {1 {12}}} \right. \kern-0em} {12}} + \varepsilon } )\) under the assumption of R.H.  相似文献   

14.
Let $ \mathbb{B} $ \mathbb{B} be the unit ball in ℂ n and let H($ \mathbb{B} $ \mathbb{B} ) be the space of all holomorphic functions on $ \mathbb{B} $ \mathbb{B} . We introduce the following integral-type operator on H($ \mathbb{B} $ \mathbb{B} ):
$ I_\phi ^g (f)(z) = \int\limits_0^1 {\operatorname{Re} f(\phi (tz))g(tz)\frac{{dt}} {t}} ,z \in \mathbb{B}, $ I_\phi ^g (f)(z) = \int\limits_0^1 {\operatorname{Re} f(\phi (tz))g(tz)\frac{{dt}} {t}} ,z \in \mathbb{B},   相似文献   

15.
Xn(d1, . . . , dr-1, dr; w) and Xn(e1, . . . , er-1, dr; w) are two complex odd-dimensional smooth weighted complete intersections defined in a smooth weighted hypersurface Xn+r-1(dr; w). We prove that they are diffeomorphic if and only if they have the same total degree d, the Pontrjagin classes and the Euler characteristic, under the following assumptions: the weights w = (ω0, . . . , ωn+r) are pairwise relatively prime and odd, νp(d/dr) ≥ 2n+1/ 2(p-1) + 1 for all primes p with p(p-1) ≤ n + 1, where νp(d/dr) satisfies d/dr =Ⅱp prime pνp (d/dr).  相似文献   

16.
Some problems involving the classical Hardy function
$ Z\left( t \right) = \zeta \left( {\frac{1} {2} + it} \right)\left( {\chi \left( {\frac{1} {2} + it} \right)} \right)^{ - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} , \zeta \left( s \right) = \chi \left( s \right) \zeta \left( {1 - s} \right) $ Z\left( t \right) = \zeta \left( {\frac{1} {2} + it} \right)\left( {\chi \left( {\frac{1} {2} + it} \right)} \right)^{ - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} , \zeta \left( s \right) = \chi \left( s \right) \zeta \left( {1 - s} \right)   相似文献   

17.
Zucker  I.J.  Joyce  G.S.  Delves  R.T. 《The Ramanujan Journal》1998,2(3):317-326
The integral $$\int_0^{{\pi \mathord{\left/ {\vphantom {\pi 4}} \right. \kern-\nulldelimiterspace} 4}} {\ln \left( {\cos ^{{m \mathord{\left/ {\vphantom {m n}} \right. \kern-\nulldelimiterspace} n}} \theta \pm \sin ^{{m \mathord{\left/ {\vphantom {m n}} \right. \kern-\nulldelimiterspace} n}} \theta } \right)d\theta } $$ where m and n are relatively prime positive integers, is evaluated exactly in terms of elementary functions and the Catalan constant G.  相似文献   

18.
In this paper,the parameterized Marcinkiewicz integrals with variable kernels defined by μΩ^ρ(f)(x)=(∫0^∞│∫│1-y│≤t Ω(x,x-y)/│x-y│^n-p f(y)dy│^2dt/t1+2p)^1/2 are investigated.It is proved that if Ω∈ L∞(R^n) × L^r(S^n-1)(r〉(n-n1p'/n) is an odd function in the second variable y,then the operator μΩ^ρ is bounded from L^p(R^n) to L^p(R^n) for 1 〈 p ≤ max{(n+1)/2,2}.It is also proved that,if Ω satisfies the L^1-Dini condition,then μΩ^ρ is of type(p,p) for 1 〈 p ≤ 2,of the weak type(1,1) and bounded from H1 to L1.  相似文献   

19.
It is shown by analytical means that, if one assumes the Riemann hypothesis, the asymptotic formula $$\sum\limits_{n \leqslant x} {\omega (n) = x 1n1n } x + B - x\int_l^{x^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} } {\frac{{\{ t\} }}{{t^2 (1n x - 1n t)}}dt + O(x^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2} + \varepsilon } )} $$ holds. This improves a result ofB. Saffari, who got a weaker error term by using the Dirichlet “hyperbola method”. The above formula, in turn, implies the Riemann hypothesis.  相似文献   

20.
Forn a positive integer letp(n) denote the number of partitions ofn into positive integers and letp(n,k) denote the number of partitions ofn into exactlyk parts. Let , thenP(n) represents the total number of parts in all the partitions ofn. In this paper we obtain the following asymptotic formula for .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号