首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
A generalized Room square G of order n and degree k is an n?1k?1 × n?1k?1 array, each cell of which is either empty or contains an unordered k-tuple of a set S, |S| = n, such that each row and each column of the array contains each element of S exactly once and G contains each unordered k-tuple of S exactly once. Using a class of Steiner systems and a generalized Room square of order 18 and degree 3 constructed by ad hoc methods, an infinite class of degree 3 squares is constructed.  相似文献   

2.
Given the data (xi, yi), i=1, 2, …, n, the problem is to find the values of the linear and nonlinear parameters â and b? which minimize the nonlinear functional |F(b)a?y|22 over a ? Rp, b ? Rq, where F ? Rn×p is a variable matrix and assumed to be of full rank, and y ? Rn is a constant vector.In this paper, we present a method for solving this problem by imbedding it into a one-parameter family of problems and by following its solution path using a predictor-corrector algorithm. In the course of iterations, the original problem containing p+q+1 variables is transformed into a problem with q+1 nonlinear variables by taking the separable structure of the problem into account. By doing so, the method reduces to solving a series of equations of smaller size and a considerable saving in the storage is obtained.Results of numerical experiments are reported to demonstrate the effectiveness of the proposed method.  相似文献   

3.
The usual Sobolev inequality in Rn, n ? 3, asserts that ∥▽?∥22 ? Sn ∥?∥212, with Sn being the sharp constant. This paper is concerned, instead, with functions restricted to bounded domains Ω ? Rn. Two kinds of inequalities are established: (i) If ? = 0 on ?Ω, then ∥▽?∥22 ? Sn ∥?||212 + C(Ω) ∥?∥p,w2 with p = 212 and ∥▽?∥22 ? Sn ∥?∥212 + D(Ω) ∥▽?∥q,w2 with q = n(n ? 1). (ii) If ? ≠ 0 on ?Ω, then ∥▽?∥2 + C(Ω) ∥?∥q,?Ω ? Sn12 ∥?∥21 with q = 2(n ? 1)(n ? 2). Some further results and open problems in this area are also presented.  相似文献   

4.
A directed BIBD with parameters (υ, b, r, k, λ1) is a BIBD with parameters (υ, b, r, k, 2λ1) in which each ordered pair of varieties occurs together in exactly λ1 blocks. It is shown that λ1υ(υ ? 1) ≡ 0 (mod 3) is a necessary and sufficient condition for the existence of a directed (υ, b, r, k, λ1) BIBD with k = 3.  相似文献   

5.
Let N?5, a>0, Ω be a smooth bounded domain in RN, 21=2NN?2, 2#=2(N?1)N?2 and 6u62=|?u|22+a|u|22. We prove there exists an α0>0 such that, for all u∈H1(Ω)?{0},
S22/N?6u62|u|2121+α0|u|2#2#6u6·|u|2121/2.
This inequality implies Cherrier's inequality. To cite this article: P.M. Girão, C. R. Acad. Sci. Paris, Ser. I 334 (2002) 105–108  相似文献   

6.
In two party elections with popular vote ratio pq, 12≤p=1 ?q, a theoretical model suggests replacing the so-called MacMahon cube law approximation (pq)3, for the ratio PQ of candidates elected, by the ratio ?k(p)?k(q) of the two half sums in the binomial expansion of (p+q)2k+1 for some k. This ratio is nearly (pq)3 when k = 6. The success probability gk(p)=(pa(pa+qa) for the power law (pq)a?PQ is shown to so closely approximate ?k(p)=Σ0k(r2k+1)p2k+1?rqr, if we choose a = ak=(2k+1)!4kk!k!, that 1≤?k(p)gk(p)≤1.01884086 for k≥1 if12≤p≤1. Computationally, we avoid large binomial coefficients in computing ?k(p) for k>22 by expressing 2?k(p)?1 as the sum (p?q) Σ0k(4pq)sas(2s+1), whose terms decrease by the factors (4pq)(1?12s). Setting K = 4k+3, we compute ak for the large k using a continued fraction πak2=K+12(2K+32(2K+52(2K+…))) derived from the ratio of π to the finite Wallis product approximation.  相似文献   

7.
Let u(x, t) be the solution of utt ? Δxu = 0 with initial conditions u(x, 0) = g(x) and ut(x, 0) = ?;(x). Consider the linear operator T: ?; → u(x, t). (Here g = 0.) We prove for t fixed the following result. Theorem 1: T is bounded in Lp if and only if ¦ p?1 ? 2?1 ¦ = (n ? 1)?1and ∥ T?; ∥LαP = ∥?;∥LPwith α = 1 ?(n ? 1) ¦ p?1 ? 2?1 ¦. Theorem 2: If the coefficients are variables in C and constant outside of some compact set we get: (a) If n = 2k the result holds for ¦ p?1 ? 2?1 ¦ < (n ? 1)?1. (b) If n = 2k ? 1, the result is valid for ¦ p?1 ? 2?1 ¦ ? (n ? 1). This result are sharp in the sense that for p such that ¦ p?1 ? 2?1 ¦ > (n ? 1)?1 we prove the existence of ?; ? LP in such a way that T?; ? LP. Several applications are given, one of them is to the study of the Klein-Gordon equation, the other to the completion of the study of the family of multipliers m(ξ) = ψ(ξ) ei¦ξ¦ ¦ ξ ¦ ?b and finally we get that the convolution against the kernel K(x) = ?(x)(1 ? ¦ x ¦)?1 is bounded in H1.  相似文献   

8.
Let LF be a finite separable extension, L1 = L{0}, and T(L1F1) the torsion subgroup of L1F1. When LF is an abelian extension T(L1F1) is explicitly determined. This information is used to study the structure of T(L1F1). In particular, T(F(α)1F1) when am = aF is explicitly determined.  相似文献   

9.
Let (L2)B?? and (L2)b?? be the spaces of generalized Brownian functionals of the white noises ? and ?, respectively. A Fourier transform from (L2)B?? into (L2)b?? is defined by ??(?) = ∫S1: exp[?i ∫R?(t) ?(t) dt]: b??(B?) dμ(B?), where : :b? denotes the renormalization with respect to ? and μ is the standard Gaussian measure on the space S1 of tempered distributions. It is proved that the Fourier transform carries ?(t)-differentiation into multiplication by i?(t). The integral representation and the action of?? as a generalized Brownian functional are obtained. Some examples of Fourier transform are given.  相似文献   

10.
Let Ms, be the number of solutions of the equation
X13 + X23+ … + Xs3=0
in the finite field GF(p). For a prime p ≡ 1(mod 3),
s=1 MsXs = x1 ? px+ x2(p ? 1)(2 + dx)1 ? 3px2 ? pdx3
,
M3 = p2 + d(p ? 1)
, and
M4 = p2 + 6(p2 ? p)
. Here d is uniquely determined by
4p = d2 + 27b2and d ≡ 1(mod 3)
.  相似文献   

11.
12.
A construction is given for difference sets in certain non-cyclic groups with the parameters v = qs+1{[(qs+1 ? 1)(q ? 1)] + 1}, k = qs(qs+1 ? 1)(q ? 1), λ = qs(qs ? 1)(q ? 1), n = q2s for every prime power q and every positive integer s. If qs is odd, the construction yields at least 12(qs + 1) inequivalent difference sets in the same group. For q = 5, s = 2 a difference set is obtained with the parameters (v, k, λ, n) = (4000, 775, 150, 625), which has minus one as a multiplier.  相似文献   

13.
A construction is given for difference sets with parameters v = 12 3s+1(3s+1 ? 1), k = 12 3s(3s+1 + 1), λ = 12 3s(3s + 1), n = 32s in certain noncyclic groups of order v. For s = 1 it is shown that the construction yields all possible difference sets with parameters (36, 15, 6, 9) in an abelian group of order 36.  相似文献   

14.
In the present paper we prove
n=1nxnj=n+I(1?xj)
=n=1(?1)n?1xn(n+1)2(1?x)(1?x2)?(1?xn?1)(1?xn)2
=n=1d(n)xn
  相似文献   

15.
In this Note we present some results on the existence of radially symmetric solutions for the nonlinear elliptic equation
(1)Mλ,Λ+(D2u)+up=0,u?0inRN.
Here N?3, p>1 and Mλ,Λ+ denotes the Pucci's extremal operators with parameters 0<λ?Λ. The goal is to describe the solution set as function of the parameter p. We find critical exponents 1<ps+<p1+<pp+, that satisfy: (i) If 1<p<p1+ then there is no nontrivial solution of (1). (ii) If p=p1+ then there is a unique fast decaying solution of (1). (iii) If p1<p?pp+ then there is a unique pseudo-slow decaying solution to (1). (iv) If pp+<p then there is a unique slow decaying solution to (1). Similar results are obtained for the operator Mλ,Λ?. To cite this article: P.L. Felmer, A. Quaas, C. R. Acad. Sci. Paris, Ser. I 335 (2002) 909–914.  相似文献   

16.
Let T be a subnormal, nonnormal operator on a Hilbert space and suppose that the point spectrum of T1 is empty. Then there exist vectors x ≠ 0 for which (T1 ? zI)?1x exists and is weakly continuous for all z. It is shown that under certain conditions, the Cauchy integral of this vector function taken around an appropriate contour, not necessarily lying in the resolvent set of T1, leads to a proper (nontrivial) invariant subspace of T1.  相似文献   

17.
Let 1M be a denumerately comprehensive enlargement of a set-theoretic structure sufficient to model R. If F is an internal 1finite subset of 1N such that F = {1,…,γ}, γ?1N?N, we define a class of 1finite cooperative games having the form ΓF(1ν) = 〈F,A(F), 1ν〉, where A(F) is the internal algebra of the internal subsets of F, and 1ν is a set-function with Dom1ν=A(F), Rng1ν = 1R+, and 1ν(Ø) = 0. If SI(1ν) is the space of S-imputations of a game ΓF(1ν) such that 1ν(F)<η, for some η?1N, then we prove that SI(1ν) contains two nonempty subsets: QK(ΓF(1ν)) and SM1F(1ν)), termed the quasi-kernel and S-bargaining set, respectively. Both QK(ΓF(1ν)) and SM1F(1ν)) are external solution concepts for games of the form ΓF (1ν) and are defined in terms of predicates that are approximate in infinitesimal terms. Furthermore, if L(Θ) is the Loeb space generated by the 1finitely additive measure space 〈F, A(F), UF〉, and if a game ΓF(1ν) has a nonatomic representation ψ(1ν?0) on L(Θ) with respect to S-bounded transformations, then the standard part of any element in QK(ΓF(1ν)) is Loeb-measurable and belongs to the quasi-kernel of ψ(1ν?0) defined in standard terms.  相似文献   

18.
Let Sp×p ~ Wishart (Σ, k), Σ unknown, k > p + 1. Minimax estimators of Σ?1 are given for L1, an Empirical Bayes loss function; and L2, a standard loss function (RiE(LiΣ), i = 1, 2). The estimators are Σ??1 = aS?1 + br(S)Ip×p, a, b ≥ 0, r(·) a functional on Rp(p+2)2. Stein, Efron, and Morris studied the special cases Σa?1 = aS?1 (EΣ?k?p?1?1 = Σ?1) and Σ?1?1 = aS?1 + (b/tr S)I, for certain, a, b. From their work R1?1, Σ?1?1; S) ≤ R1?1, Σ?a?1; S) (?Σ), a = k ? p ? 1, b = p2 + p ? 2; whereas, we prove R2?1Σ?a?1; S) ≤ R2?1, Σ?1?1; S) (?Σ). The reversal is surprising because L1?1, Σ?1?1; S) → L2?1, Σ?1?1; S) a.e. (for a particular L2). Assume R (compact) ? S, S the set of p × p p.s.d. matrices. A “divergence theorem” on functions Fp×p : RS implies identities for Ri, i = 1, 2. Then, conditions are given for Ri?1, Σ??1; S) ≤ Ri?1, Σ?1?1; S) ≤ Ri?1, Σ?a?1; S) (?Σ), i = 1, 2. Most of our results concern estimators with r(S) = t(U)/tr(S), U = p ∣S1/p/tr(S).  相似文献   

19.
20.
It is shown that K2m1, 2m ≥ 8, can be decomposed into Hamiltonian circuits. A direct construction utilizing difference methods is given for 2m ≡ 0 (mod 4). The case 2m ≡ 2 (mod 4) is handled inductively by means of a construction which shows that K4m ? 21 admits such a decomposition if K2m1 does.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号