首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
为了有效地利用卫星下传的海量遥测数据,在测试过程中对卫星进行实时的故障诊断,提出了一种基于BP神经网络的卫星故障诊断方法;该方法包括离线自主学习和实时在线故障诊断两部分;离线自主学习部分基于历史数据库和更新样本进行自主学习,学习获得神经网络模型存储于知识库;实时在线故障诊断部分依据相应的神经网络模型,对遥测数据进行实时在线的诊断;为了验证基于BP神经网络的卫星故障诊断方法的有效性和优越性,以现有型号三轴稳定近地卫星控制分系统为实验对象,利用该方法对具有代表性的红外地球敏感器和动量轮的相关遥测数据进行分析;通过将该方法的实验结果与基于Kalman滤波的方法的实验结果进行对比分析,表明该方法能够有效地对卫星的故障进行诊断。  相似文献   

2.
在对诱发铀部件裂变信号的测量原理及特点分析的基础上,开展了基于BP神经网络的诱发铀部件裂变时间关联信号特征参量分析处理的研究工作。 采用无偏估计方法, 计算信号的自相关函数和互相关函数, 再利用比较法和导数法两种特征量提取方法, 提取出不同状态下裂变信号的特征参量, 借助于BP神经网络模式识别应用原理进行训练和预测。 理论分析和研究结果表明: 基于比较法和导数法获得的特征参量能较好地反映诱发铀部件裂变信号的特征; 用BP神经网络对裂变信号进行模式识别, 取得了较高的正确率, 验证了此方法的有效性和合理性。 The paper presents feature parameter analysis and processing in fission time dependent signal of induced uranium components based on BP Neural Networks through the analysis of the measuring principle and signal characteristics of induced uranium components fission signal. The auto correlation functions and cross correlation functions are calculated by using unbiased estimate, and then the feature parameters of fission signal in different status are extracted by using feature abstraction method, comparative method and derivative method, and then applied to training and prediction by means of BP neural networks based on pattern recognition. Theoretical analysis and the results show that, it is effective to obtain feature parameters of induced uranium component fission signal via comparative method and derivative method. UsingBP neural network to recognize patter of fission signal, we got good results that verified the effectiveness and reasonability of the method.  相似文献   

3.
【】本文针对过拟合现象提出了基于提前停止法的学习率可变BP算法,运用多级BP神经网络诊断思想,提出了基于多级BP神经网络的多故障诊断方法。文中根据BP神经网络改进算法和网络撕裂法,对具体的机载无线电罗盘测向电路建模仿真,将复杂的无线电罗盘电路分解为3个子网络,并对每个子网络建立合适的故障集,快速准确诊断得出电路中的故障模块。  相似文献   

4.
提出了一种新的表面组装焊点的自动光学检测分类方法。采用单层环形光源获取焊点图像,并根据归一化分割曲线方程将焊点图像分成四部分,分别提取其特征。使用BP神经网络将焊点按照锡量多少分成三类:少锡,容许和多锡。实验结果证明该方法分类正确率达到了99.2%,具有较高的实用价值。  相似文献   

5.
基于BP神经网络的数码相机特性化   总被引:4,自引:0,他引:4  
由于数码相机的颜色空间是依赖于设备的,对于一个具体的数码相机,其光谱响应与设备独立的CIE标准观察者颜色匹配函数是一个非线性关系,因此不能真实复制场景的颜色。特性化彩色图像设备是提高图像的颜色复制质量的一个重要方法。介绍一种基于BP神经网络数码相机特性化方法。采用Munsell颜色系统作为目标色,大样本训练空间。测试了不同的网络结构和样本空间分布。训练样本平均色差为1.75CMC(1∶1)色差单位,测试样本为2.16。该方法在数码相机颜色测量、光谱重建等领域有广泛的应用前景。  相似文献   

6.
根据LED可靠性与相关参数的映射关系,建立拓扑结构为6-12-1的BP神经网络.以实测白光LED芯片的理想因子、结温、色温漂移等参数为输入量,以寿命为输出量,计算模型精度.研究结果表明,该模型有良好的外推能力及鲁棒性,可在短时间内成功预测LED寿命,神经网络训练结果相关系数为99.8%,检验组误差小于3%.

  相似文献   

7.
基于BP神经网络的PID控制器   总被引:8,自引:3,他引:8  
利用神经网络和反馈控制理论,提出了一种基于神经网络PID控制器的伺服控制系统结构.在高精度仿真试验转台的应用中证实,该方法避免了PID参数的整定难以匹配的问题,减小了干摩擦对低速运动的影响.实验表明:方法自适应能力强,调节品质好,具有较高的应用价值.  相似文献   

8.
轮胎中植入的RFID标签,可以长时间的很好的存储轮胎的型号、胎压、出厂日期等信息。RFID标签在空气中的阅读距离可以达到很大的距离,但是一旦植入轮胎中,很容易受到轮胎中的金属层和炭黑等电介质的影响,导致读取距离下降。所以,需要寻找合适的方法来预测不同RFID标签情况下的阅读器读取距离,就显得尤为重要了。 为了更加快捷方便的研究两者之间的关系,在天线长度、轮胎的介电常数、与钢丝层的距离都变化的情况下,利用FEKO电磁仿真软件建立了不同情况下的天线,并仿真得到反射系数S_11,然后利用弗林斯传输方程(Friis)计算得到仿真读取距离。MATLAB中有可供调用的神经网络工具箱,利用MATLAB强大的数据处理能力,建立BP神经网络预测模型,从而建立起标签天线长度、轮胎中标签与钢丝层的距离、轮胎介电常数和已得到的仿真读取距离之间的BP神经网络模型。实际测量值与训练后得到的预测仿真值在误差允许的范围内可以认定为实际测量距离。 因此,可以通过建立BP神经网络模型的方法,快速方便的在一定精度范围内预测阅读器的阅读距离。  相似文献   

9.
光纤陀螺技术发展迅速,已成为研究热点,且在惯性导航系统中应用前景广阔,光纤陀螺的特性研究实验对提高大学生的物理实验能力有重要实践意义.但在实验中,光纤陀螺性能容易受到环境因素影响,而影响测量精度.本文采用BP神经网络模型,针对光纤陀螺因实验环境的影响而产生的误差进行补偿研究.通过BP神经网络训练实验数据样本,对误差进行...  相似文献   

10.
通过分析反潜巡逻机背景磁场模型,针对传统模型求解时对模型参数求解方法存在的不足,本文提出了一种基于BP神经网络的飞机背景磁场模型求解新方法。该方法不讨论复杂的模型参数估计的问题,通过前期神经网络训练学习,直接把飞机磁补偿飞行过程中采集到的相关信号输入到训练好的网络中,得到输出干扰磁场,进而对其进行补偿。最后通过实例仿真验证了该方法的正确性和有效性,为提高反潜巡逻机磁探搜潜效能提供了科学依据,具有一定的军事意义。  相似文献   

11.
    
Wind turbine gearboxes operate in harsh environments; therefore, the resulting gear vibration signal has characteristics of strong nonlinearity, is non-stationary, and has a low signal-to-noise ratio, which indicates that it is difficult to identify wind turbine gearbox faults effectively by the traditional methods. To solve this problem, this paper proposes a new fault diagnosis method for wind turbine gearboxes based on generalized composite multiscale Lempel–Ziv complexity (GCMLZC). Within the proposed method, an effective technique named multiscale morphological-hat convolution operator (MHCO) is firstly presented to remove the noise interference information of the original gear vibration signal. Then, the GCMLZC of the filtered signal was calculated to extract gear fault features. Finally, the extracted fault features were input into softmax classifier for automatically identifying different health conditions of wind turbine gearboxes. The effectiveness of the proposed method was validated by the experimental and engineering data analysis. The results of the analysis indicate that the proposed method can identify accurately different gear health conditions. Moreover, the identification accuracy of the proposed method is higher than that of traditional multiscale Lempel–Ziv complexity (MLZC) and several representative multiscale entropies (e.g., multiscale dispersion entropy (MDE), multiscale permutation entropy (MPE) and multiscale sample entropy (MSE)).  相似文献   

12.
齿轮箱是机械设备中一种必不可少的通用零部件,也是故障多发部件,而齿轮失效又是诱发其故障的重要因素。因此发展新型齿轮箱故障诊断技术具有重要意义。搭建了基于Polytec激光测振仪的光学测量系统,拾取齿轮箱振动信号,采用第二代小波提取故障特征,达到了故障诊断的目的,可用于齿轮箱故障预知和智能维修。  相似文献   

13.
    
This study proposes a fully automated gearbox fault diagnosis approach that does not require knowledge about the specific gearbox construction and its load. The proposed approach is based on evaluating an adaptive filter’s prediction error. The obtained prediction error’s standard deviation is further processed with a support-vector machine to classify the gearbox’s condition. The proposed method was cross-validated on a public dataset, segmented into 1760 test samples, against two other reference methods. The accuracy achieved by the proposed method was better than the accuracies of the reference methods. The accuracy of the proposed method was on average 9% higher compared to both reference methods for different support vector settings.  相似文献   

14.
    
The vibration signal of gearboxes contains abundant fault information, which can be used for condition monitoring. However, vibration signal is ineffective for some non-structural failures. In order to resolve this dilemma, infrared thermal images are introduced to combine with vibration signals via fusion domain-adaptation convolutional neural network (FDACNN), which can diagnose both structural and non-structural failures under various working conditions. First, the measured raw signals are converted into frequency and squared envelope spectrum to characterize the health states of the gearbox. Second, the sequences of the frequency and squared envelope spectrum are arranged into two-dimensional format, which are combined with infrared thermal images to form fusion data. Finally, the adversarial network is introduced to realize the state recognition of structural and non-structural faults in the unlabeled target domain. An experiment of gearbox test rigs was used for effectiveness validation by measuring both vibration and infrared thermal images. The results suggest that the proposed FDACNN method performs best in cross-domain fault diagnosis of gearboxes via multi-source heterogeneous data compared with the other four methods.  相似文献   

15.
    
A method for gearbox fault diagnosis consists of feature extraction and fault identification. Many methods for feature extraction have been devised for exposing nature of vibration data of a defective gearbox. In addition, features extracted from gearbox vibration data are identified by various classifiers. However, existing literatures leave much to be desired in assessing performance of different combinatorial methods for gearbox fault diagnosis. To this end, this paper evaluated performance of several typical combinatorial methods for gearbox fault diagnosis by associating each of multifractal detrended fluctuation analysis (MFDFA), empirical mode decomposition (EMD) and wavelet transform (WT) with each of neural network (NN), Mahalanobis distance decision rules (MDDR) and support vector machine (SVM). Following this, performance of different combinatorial methods was compared using a group of gearbox vibration data containing slightly different fault patterns. The results indicate that MFDFA performs better in feature extraction of gearbox vibration data and SVM does the same in fault identification. Naturally, the method associating MFDFA with SVMshows huge potential for fault diagnosis of gearboxes. As a result, this paper can provide some useful information on construction of a method for gearbox fault diagnosis.  相似文献   

16.
故障的自动诊断和修复是云计算提供持续服务的关键。为了提高云环境下故障自动诊断的性能,本文提出了一种包含相似性替代图和检测图的故障诊断框架。首先,根据相似性将系统的运行指标和事件构成替代图,对替代图中的节点进行分组,使得同一组中的节点可以相互替代。其次,根据事件的时间关系将故障表示为事件的序列,通过排名的方法识别出关键事件并以此构成故障模式。最后,提出了一种基于贝叶斯方法的故障诊断算法。实验表明,本文提出的故障诊断方法与著名的fingerprints方法相比,故障诊断的准确性更高,诊断效率更快。  相似文献   

17.
针对现有电力调度中语声识别方法存在的字识别错误率高和耗时长等问题,在分析语声识别技术的基础上,提出了一种改进的深度学习方法用于电力调度语声识别。将改进的深度残差收缩网络和改进的门控卷积神经网络相结合,通过改进的深度残差收缩网络提取有效特征,在通过堆叠改进的门控卷积神经网络来获取有效上下文信息。通过试验对所提方法的性能进行分析,验证其优越性。结果表明,所提方法与常规识别方法相比,在模型参数、字识别错误率和平均识别时间上均具有一定的优势,模型参数量为6.48 M,字识别错误率为2.87%,平均识别时间为0.187 s。该研究为电力调度语言识别方法的发展提供了一定的参考。  相似文献   

18.
赵乾坤  刘峰  梁秀兵  汪涛  宋永强 《应用声学》2023,42(5):1033-1041
水声目标被动识别是水声信号处理领域的研究热点之一。海洋环境中存在的不规则噪声干扰,使得基于传统方法的水声目标被动识别技术在实际的应用场景中效果不佳。本文采用一种基于时延网络(Time Delay Neural Network,TDNN)模型的舰船辐射噪声目标识别方法,该方法利用目标的短时平稳特性和长时关联特性对目标的声纹特征进行建模,使用梅尔谱图提取目标信号的初级特征,再通过融合注意力机制和时延神经网络的深度学习模型实现高级特性提取,最后再利用余弦相似度实现不同目标的类别划分。该方法在ShipsEar数据集和自行采集的数据进行测试验证,目标识别准确率分别达到79.2%和73.9%,可证明本文方法的有效性。  相似文献   

19.
鉴于特殊的飞行任务需求,某型号航电综合单一的故障逻辑难以满足多元故障状态下自主重构需求,降低了系统容错性。为解决航电综合多元故障模式难以量化表征影响故障重构的工程难题,创新的提出了一种适用于航电综合的故障检测和重构方法,基于决策表数据挖掘技术的航电综合故障预测流程和多源信息故障检测技术确保常规故障检测率大于98%,航电系统重构状态的量化表征分类方式确保了系统快速重构设计,本文提出的故障检测和重构方法极大地提高航电综合系统的故障检测率与容错能力。  相似文献   

20.
I.TntroductionStatisticalandneuralnetworkmcthodsforpatternclassiflcationusesignificantlydifTerentapproachesintrainingaclassificr.Inthestatistica1approach,thcformationofaclassifier1arge1ydependsonthestatisticsofthetrainingpatternsand,insomecases,theassumptionsaboutthedistributionofthepopulation.Theneuralnetworkmethodisnon-parametricandcanbeadaptivcinthetrainingprocessl'l.Becauseofitssimplicityandflexibility,theneuralnetworkhasbecnincreasing1yusedforpatternclassiflcation.Itisnowwe11knownthatan…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号