首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effect of Variant Counterions on Stability and Particle Size of Silica Sol   总被引:1,自引:0,他引:1  
The effects of variant counterions with ionic strength of 0.05, 0.10, 0.20 and 0.25 mol·kg^-1 on the stability and particle size of silica sols have been studied using the traditional methods of Ubbelohde viscosity measurement, TEM and titration respectively, finding that the stability and particle size of the silica sols are all concerned with the acidic, positively electric properties and the sizes of the counterions, as well as the attraction between the counterions and surface silicon hydroxyl groups of the silica sols. The small positively charged counterions lead to the decrease in particle sizes, making the silica sol the most stable. But the larger weakly acidic counterions can restrict the particle sizes of the silica sols and easily make the sols coagulate. It was also found that there existed a linear relationship between log r and log η, which has not ever been reported. The effect of temperature on the stability and particle sizes was also discussed.  相似文献   

2.
The electrical potential for the case of two identical, planar parallel particles immersed in a salt-free medium, where the ionic species in the counterions come solely from those that dissociated from the surfaces, is evaluated. Analytical expressions for the electrical potential, the concentration of counterions, and the electrical energy are derived. We show that in a salt-free dispersion, if the separation distance between two particles is sufficiently far, the electrical repulsive force dominates, that is, the total energy is positive and does not have a secondary minimum, which is not the case for a dispersion where both coions and counterions are present. Also, the conditions used to calculate the critical coagulation concentration in the classic Derjaguin-Landau-Verwey-Overbeek theory become inappropriate and the Derjaguin approximation is inapplicable. We show that if the surface charge density exceeds approximately 0.04 Cm(2), the stability of a salt-free dispersion remains essentially the same. If the surface charge density is sufficiently high, the maximum separation distance between two particles below which coagulation occurs is in the ranges of [0,1 nm] and [1,7 nm] for the cases where the Hamaker constant is 10(-20) and 10(-19) J, respectively.  相似文献   

3.
Abstract

The present paper deals with the surface charge properties and the dispersion stability of an aqueous titania suspension. Generally the titania powder surface is negatively charged. The dispersion stability of TiO2 suspension is governed by the value of zeta potential. The zeta potential was measured as a function of barium acetate and zinc acetate concentrations, at pH 6.0, and the addition of electrolytes caused sharp decrease of surface charge. Ethylenediaminetetraacetic acid (EDTA) was used to chelate the bivalent metal ions, so that the charge of counterions was reduced. The complexation of bivalent counterions favors the increase of the negative zeta potential and the dispersion stability of aqueous TiO2 suspension.  相似文献   

4.
The influence of the ionic sizes on the stability of a dispersion of particles, which have an amphoteric, charged-regulated surface, is discussed. A modified Poisson-Boltzmann equation, which takes into account the sizes of ionic species, is adopted to describe the electrical field. An extended DLVO theory, which takes into account the electrical, the van der Waals, and the hydration energies, is used to estimate the stability of a colloidal dispersion. The effects of the key parameters, including ionic strength, pH, and density of surface sites, on the behavior of problem under consideration are examined. The results obtained are qualitatively consistent with experimental findings in the literature.  相似文献   

5.
We have applied a restricted grand canonical Monte Carlo procedure to describe, in the framework of the primitive model, the counterion exchange mechanism between diffuse layers of counterions surrounding segregated charged lamellae. The net charge transfer between the dense and dilute domains is shown to vary as a function of the valence of the neutralizing counterions: undercharging of the dense interlayer is detected in the presence of monovalent counterions and overcharging with divalent counterions. Furthermore, no net reduction of the swelling pressure is detected for monovalent counterions, while a large enhancement of the net interlamellar attraction is found for charged lamellae neutralized by divalent counterions.  相似文献   

6.
Molecular quantum-dot cellular automata (QCA) is a promising paradigm for realizing molecular electronics. In molecular QCA, binary information is encoded in the distribution of intramolecular charge, and Coulomb interactions between neighboring molecules combine to create long-range correlations in charge distribution that can be exploited for signal transfer and computation. Appropriate mixed-valence species are promising candidates for single-molecule device operation. A complication arises because many mixed-valence compounds are ions and the associated counterions can potentially disrupt the correct flow of information through the circuit. We suggest a self-doping mechanism which incorporates the counterion covalently into the structure of a neutral molecular cell, thus producing a zwitterionic mixed-valence complex. The counterion is located at the geometrical center of the QCA molecule and bound to the working dots via covalent bonds, thus avoiding counterion effects that bias the system toward one binary information state or the other. We investigate the feasibility of using multiply charged anion (MCA) boron clusters, specifically closo-borate dianion, as building blocks. A first principle calculation shows that neutral, bistable, and switchable QCA molecules are possible. The self-doping mechanism is confirmed by molecular orbital analysis, which shows that MCA counterions can be stabilized by the electrostatic interaction between negatively charged counterions and positively charged working dots.  相似文献   

7.
The deposition of charge-regulated particles to a rigid, planar charged surface is modeled theoretically, taking the effects of the excluded area arising from deposited particles and finite ionic sizes into account. Here, a particle comprises a rigid core and an ion-penetrable charged membrane layer, which represents a general type of particle. If the membrane layer has a negligible thickness, the particle simulates a regular inorganic particle, and if the membrane layer has a finite thickness, it simulates biocolloids such as cells. The results of numerical simulation reveal that the rate of particle deposition is faster under the following conditions: (1) lower potential of the planar surface, (2) thicker membrane, (3) higher counterion valance, (4) lower fixed charge density, (5) smaller counterions, (6) larger co-ions, (7) larger functional group, and (8) lower pH. Neglecting the sizes of ionic species may lead to an appreciable deviation in both the electrical repulsive force between particle and surface and the rate of deposition. Typical deviation for the former is approximately 20%, and that for the latter is approximately -75%.  相似文献   

8.
The effect of polyelectrolyte charge density on the electrical properties and stability of suspensions of oppositely charged oxide particles is followed by means of electro-optics and electrophoresis. Variations in the electro-optical effect and the electrophoretic mobility are examined at conditions where fully ionized pectins of different charge density adsorb onto particles with ionizable surfaces. The charge neutralization point coincides with the maximum of particle aggregation in all suspensions. We find that the concentration of polyelectrolyte, needed to neutralize the particle charge, decreases with increasing charge density of the pectin. The most highly charged pectin presents an exception to this order, which is explained with a reduction of the effective charge density of this pectin due to condensation of counterions. The presence of condensed counterions, remaining bound to the pectin during its adsorption on the particle surface, is proved by investigation of the frequency behavior of the electro-optical effect at charge reversal of the particle surface.  相似文献   

9.
We study the interaction between two like charged surfaces embedded in a solution of oppositely charged multivalent rod-like counterions.The counterions consist of two rigidly bonded point charges,each of valency Z.The strength of the electrostatic coupling increases with increasing surface charge density or valency of the charges.The system is analyzed by employing a self-consistent field theory,which treats the short and long range interactions of the counterions within different approximations.We find that in the weak coupling limit,the interactions are only repulsive.In the intermediate coupling regime,the multivalent rod-like counterions can mediate attractive interactions between the surfaces. For sufficiently long rods,bridging contributes to the attractive interaction.In the strong coupling limit,the charge correlations can contribute to the attractive interactions at short separations between the charged surfaces.Two minima can then appear in the force curve between surfaces.  相似文献   

10.
11.
Both exact and approximate analytical solutions of the Poisson-Boltzmann equation for two planar, parallel surfaces are derived for the case when a dispersion medium contains counterions only, and the results obtained are used to evaluate the critical coagulation concentration of a spherical dispersion. A correction factor, which is a function of the valence of counterions, the surface potential of a particle, and the potential on the midplane between two particles at the onset of coagulation, is derived to modify the classic Schulze-Hardy rule for the dependence of the critical coagulation concentration on the valence of counterions. The correction factor is found to increase with the increase in the valence of counterions and/or with the increase in the surface potential. However, it approaches a constant value of 0.8390 if the surface potential is sufficiently high.  相似文献   

12.
Polyamidoamine dendrimers, being protonated under physiological conditions, represent a promising class of nonviral, nanosized vectors for drug and gene delivery. We performed extensive molecular dynamics simulations of a generic model dendrimer in a salt-free solution with dendrimer's terminal beads positively charged. Solvent molecules as well as counterions were explicitly included as interacting beads. We find that the size of the charged dendrimer depends nonmonotonically on the strength of electrostatic interactions demonstrating a maximum when the Bjerrum length equals the diameter of a bead. Many other structural and dynamic characteristics of charged dendrimers are also found to follow this pattern. We address such a behavior to the interplay between repulsive interactions of the charged terminal beads and their attractive interactions with oppositely charged counterions. The former favors swelling at small Bjerrum lengths and the latter promotes counterion condensation. Thus, counterions can have a dramatic effect on the structure and dynamics of charged dendrimers and, under certain conditions, cannot be treated implicitly.  相似文献   

13.
The self-assembly of molecular components into complex superstructures involves the subtle interplay of various noncovalent forces. Charged species are often utilised in self-assembly processes as a result of the favorable π-π, cation-π, electrostatic, and hydrogen bonding interactions that form between these species. Although the counterions associated with these charged species can exert significant effects on the synthesis, stability, and operation of superstructures in solution, rarely are the counterions considered, leading to misinterpretations and misunderstandings of the studied systems. In this tutorial review, we discuss a variety of solution-phase counterion effects, from the fundamental origins to innovative ways in which these effects are exploited for useful functions.  相似文献   

14.
We apply extensive molecular dynamics simulations and analytical considerations in order to study the conformations and the effective interactions between weakly charged, flexible polyelectrolyte chains in salt-free conditions. We focus on charging fractions lying below 20%, for which case there is no Manning condensation of counterions and the latter can be thus partitioned in two states: those that are trapped within the region of the flexible chain and the ones that are free in the solution. We examine the partition of counterions in these two states, the chain sizes and the monomer distributions for various chain lengths, finding that the monomer density follows a Gaussian shape. We calculate the effective interaction between the centers of mass of two interacting chains, under the assumption that the chains can be modeled as two overlapping Gaussian charge profiles. The analytical calculations are compared with measurements from molecular dynamics simulations. Good quantitative agreement is found for charging fractions below 10%, where the chains assume coil-like configurations, whereas deviations develop for charge fraction of 20%, in which case a conformational transition of the chain towards a rodlike configuration starts to take place.  相似文献   

15.
Although many ionic metal–organic frameworks (MOFs) have been reported, little is known about how the charge of the skeleton affects the properties of the MOF materials. Herein we report how the chemical stability of MOFs can be substantially improved through embedding electrostatic interactions in structure. A MOF with a cationic skeleton is impervious to extremely acidic, oxidative, reductive, and high ionic strength conditions, such as 12 m HCl (301 days), aqua regia (86 days), H2O2 (30 days), and seawater (30 days), which is unprecedented for MOFs. DFT calculations suggested that steric hinderance and the repulsive interaction of the cationic framework toward positively charged species in microenvironments protects the vulnerable bonds in the structure. Diverse functionalities can be bestowed by substituting the counterions of the charged framework with identically charged functional species, which broadens the horizon in the design of MOFs adaptable to a demanding environment with specific functionalities.  相似文献   

16.
Although many ionic metal–organic frameworks (MOFs) have been reported, little is known about how the charge of the skeleton affects the properties of the MOF materials. Herein we report how the chemical stability of MOFs can be substantially improved through embedding electrostatic interactions in structure. A MOF with a cationic skeleton is impervious to extremely acidic, oxidative, reductive, and high ionic strength conditions, such as 12 m HCl (301 days), aqua regia (86 days), H2O2 (30 days), and seawater (30 days), which is unprecedented for MOFs. DFT calculations suggested that steric hinderance and the repulsive interaction of the cationic framework toward positively charged species in microenvironments protects the vulnerable bonds in the structure. Diverse functionalities can be bestowed by substituting the counterions of the charged framework with identically charged functional species, which broadens the horizon in the design of MOFs adaptable to a demanding environment with specific functionalities.  相似文献   

17.
We present explicit water molecular dynamics simulations of solutions of aliphatic 3,3- and 6,6-ionene oligocations neutralized with (i) fluoride, chloride, bromide, or iodide counterions, respectively, or (ii) with a 1:1 mixture of chloride and bromide anions in presence of a low molecular weight salt at 298 K. The SPC/E model was used to describe water molecules. Results of the simulation are presented in form of the pair distribution functions between various atoms on the ionene oligoion and counterions in solution. In addition, we were interested in the dynamics of counterions around model ionenes. We showed that counterions residing in the vicinity of the oligoion exchange rapidly with those in the bulk solution, with the frequency depending on the nature of the counterion and on the charge density of the oligoion. We calculated the average residence times of the various counterion species to the oligoions and proposed the model which divides the counterions into "free" and "bound" and calculated the fraction of "free" counterions. In the second part of the study, we investigated interaction of the sodium chloride and sodium bromide, being simultaneously present in the solution, with differently charged ionenes in water. The selectivity effect was clearly observed: bromide ions tend to replace chloride ions in the immediate vicinity of the ionene oligoions. Simulation results are discussed in light of our recent measurements of thermodynamic and transport properties of aqueous ionene solutions.  相似文献   

18.
Complexation between sodium carboxymethylcellulose (NaCMC) and ellipsoidal particles of oppositely charged beta-FeOOH is studied using electric light scattering and electrophoresis. We focus on the complex behavior for overcharging of the particle surface. In this case, the fraction of condensed counterions on NaCMC is found to remain unchanged during polymer adsorption onto a weakly charged particle surface. Using the theory of Sens and Joanny, we evaluate the fraction of condensed counterions and compare it with results for nonadsorbed NaCMC. The polarization of condensed counterions along the chain of the adsorbed macromolecule is proved to create the electro-optical effect in suspensions stabilized by NaCMC adsorption.  相似文献   

19.
The solubility of charged nanoparticles is critically dependent on pH. However, the concentration range available with bases such as NaOH is quite narrow, since the particles precipitate due to compression of the electric double layer when the ionic strength is increased. The stability of mercaptoundecanoic acid-capped Au nanoparticles is studied at a set pH using the hydroxide as base and different cations of various sizes. The counterions used are sodium (Na(+)), tetramethylammonium (TMA(+)), tetraethylammonium (TEA(+)), and tetrabutylammonium (TBA(+)). The particles precipitate in the 70-90 mM range with Na(+) as the counterion, but with quaternary ammonium hydroxides the particles are stable even in concentrations exceeding 1 M. The change in solubility is linked to a strongly adsorbed layer on the surface of the ligand shell of the nanoparticles. The increased concentration range obtained with TEAOH is further used to facilitate thiol exchange which occurs at a greater extent than would be achieved in NaOH solution.  相似文献   

20.
We study polyelectrolytes end-grafted to a surface in a model which includes counterions explicitly and treats the full long-range Coulomb interaction. For strongly charged polyelectrolytes the counterions are localized inside the brush and electroneutrality is satisfied locally. Under these conditions, we find that the brush thickness is linearly proportional to the chain length and the grafting density. The counterion distribution is strongly inhomogeneous, and counterion condensation can be observed although the Bjerrum length is smaller than the average bond length. Varying the Bjerrum length we find a non-monotonic behaviour of the brush height. Counterion diffusion is anisotropic, and is enhanced at higher grafting densities. For partially charged polyelectrolytes we obtain a crossover from quasi-neutral behaviour to the strongly charged behaviour reported above.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号