首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A retract of a graph Γ is an induced subgraph Ψ of Γ such that there exists a homomorphism from Γ to Ψ whose restriction to Ψ is the identity map. A graph is a core if it has no nontrivial retracts. In general, the minimal retracts of a graph are cores and are unique up to isomorphism; they are called the core of the graph. A graph Γ is G‐symmetric if G is a subgroup of the automorphism group of Γ that is transitive on the vertex set and also transitive on the set of ordered pairs of adjacent vertices. If in addition the vertex set of Γ admits a nontrivial partition that is preserved by G, then Γ is an imprimitive G‐symmetric graph. In this paper cores of imprimitive symmetric graphs Γ of order a product of two distinct primes are studied. In many cases the core of Γ is determined completely. In other cases it is proved that either Γ is a core or its core is isomorphic to one of two graphs, and conditions on when each of these possibilities occurs is given.  相似文献   

2.
A graph G=(V,E) is called a unit-distance graph in the plane if there is an embedding of V into the plane such that every pair of adjacent vertices are at unit distance apart. If an embedding of V satisfies the condition that two vertices are adjacent if and only if they are at unit distance apart, then G is called a strict unit-distance graph in the plane. A graph G is a (strict) co-unit-distance graph, if both G and its complement are (strict) unit-distance graphs in the plane. We show by an exhaustive enumeration that there are exactly 69 co-unit-distance graphs (65 are strict co-unit-distance graphs), 55 of which are connected (51 are connected strict co-unit-distance graphs), and seven are self-complementary.  相似文献   

3.
Multithreshold graphs are defined in terms of a finite sequence of real thresholds that break the real line into a set of regions, alternating between NO and YES. If real ranks can be assigned to the vertices of a graph in such a way that two vertices are adjacent iff the sum of their ranks lies in a YES region, then that graph is a multithreshold graph with respect to the given set of thresholds. If a graph can be represented with k or fewer thresholds, then it is k-threshold. The case of one threshold is the classical case introduced by Chvátal and Hammer. In this paper, we show for every graph G, there is a k such that G is k-threshold, and we exhibit graphs for which the required number of thresholds is linear in the order of the graph.  相似文献   

4.
A graph H is strongly immersed in G if H is obtained from G by a sequence of vertex splittings (i.e., lifting some pairs of incident edges and removing the vertex) and edge removals. Equivalently, vertices of H are mapped to distinct vertices of G (branch vertices) and edges of H are mapped to pairwise edge‐disjoint paths in G, each of them joining the branch vertices corresponding to the ends of the edge and not containing any other branch vertices. We describe the structure of graphs avoiding a fixed graph as a strong immersion. The theorem roughly states that a graph which excludes a fixed graph as a strong immersion has a tree‐like decomposition into pieces glued together on small edge cuts such that each piece of the decomposition has a path‐like linear decomposition isolating the high degree vertices.  相似文献   

5.
We consider those graphs G that admit decompositions into copies of a fixed graph F, each copy being an induced subgraph of G. We are interested in finding the extremal graphs with this property, that is, those graphs G on n vertices with the maximum possible number of edges. We discuss the cases where F is a complete equipartite graph, a cycle, a star, or a graph on at most four vertices.  相似文献   

6.
Construct a graph as follows. Take a circle, and a collection of intervals from it, no three of which have union the entire circle; take a finite set of points V from the circle; and make a graph with vertex set V in which two vertices are adjacent if they both belong to one of the intervals. Such graphs are “long circular interval graphs,” and they form an important subclass of the class of all claw-free graphs. In this paper we characterize them by excluded induced subgraphs. This is a step towards the main goal of this series, to find a structural characterization of all claw-free graphs.This paper also gives an analysis of the connected claw-free graphs G with a clique the deletion of which disconnects G into two parts both with at least two vertices.  相似文献   

7.
Matching graphs     
The matching graph M(G) of a graph G is that graph whose vertices are the maximum matchings in G and where two vertices M1 and M2 of M(G) are adjacent if and only if |M1M2| = 1. When M(G) is connected, this graph models a metric space whose metric is defined on the set of maximum matchings in G. Which graphs are matching graphs of some graph is not known in general. We determine several forbidden induced subgraphs of matching graphs and add even cycles to the list of known matching graphs. In another direction, we study the behavior of sequences of iterated matching graphs. © 1998 John Wiley & Sons, Inc. J. Graph Theory 29: 73–86, 1998  相似文献   

8.
Selçuk Kayacan 《代数通讯》2018,46(4):1492-1505
The intersection graph of a group G is an undirected graph without loops and multiple edges defined as follows: the vertex set is the set of all proper non-trivial subgroups of G, and there is an edge between two distinct vertices H and K if and only if HK≠1 where 1 denotes the trivial subgroup of G. In this paper, we classify finite solvable groups whose intersection graphs are not 2-connected and finite nilpotent groups whose intersection graphs are not 3-connected. Our methods are elementary.  相似文献   

9.
A profile on a graph G is any nonempty multiset whose elements are vertices from G. The corresponding remoteness function associates to each vertex xV(G) the sum of distances from x to the vertices in the profile. Starting from some nice and useful properties of the remoteness function in hypercubes, the remoteness function is studied in arbitrary median graphs with respect to their isometric embeddings in hypercubes. In particular, a relation between the vertices in a median graph G whose remoteness function is maximum (antimedian set of G) with the antimedian set of the host hypercube is found. While for odd profiles the antimedian set is an independent set that lies in the strict boundary of a median graph, there exist median graphs in which special even profiles yield a constant remoteness function. We characterize such median graphs in two ways: as the graphs whose periphery transversal number is 2, and as the graphs with the geodetic number equal to 2. Finally, we present an algorithm that, given a graph G on n vertices and m edges, decides in O(mlogn) time whether G is a median graph with geodetic number 2.  相似文献   

10.
The nullity η(G) of a graph G is the multiplicity of zero as an eigenvalue of the adjacency matrix of G. If η(G)?=?1, then the core of G is the subgraph induced by the vertices associated with the nonzero entries of the kernel eigenvector. The set of vertices which are not in the core is the periphery of G. A graph G with nullity one is minimal configuration if no two vertices in the periphery are adjacent and deletion of any vertex in the periphery increases the nullity. An ∞-graph ∞(p,?l,?q) is a graph obtained by joining two vertex-disjoint cycles C p and C q by a path of length l?≥?0. Let ?* be the class of bicyclic graphs with an ∞-graph as an induced subgraph. In this article, we characterize the graphs in ?* which are minimal configurations.  相似文献   

11.
A 6-cycle system of a graph G is an edge-disjoint decomposition of G into 6-cycles. Graphs G, for which necessary and sufficient conditions for existence of a 6-cycle system have been found, include complete graphs and complete equipartite graphs. A 6-cycle system of G is said to be 2-perfect if the graph formed by joining all vertices distance 2 apart in the 6-cycles is again an edge-disjoint decomposition of G, this time into 3-cycles, since the distance 2 graph in any 6-cycle is a pair of disjoint 3-cycles.Necessary and sufficient conditions for existence of 2-perfect 6-cycle systems of both complete graphs and complete equipartite graphs are known, and also of λ-fold complete graphs. In this paper, we complete the problem, giving necessary and sufficient conditions for existence of λ-fold 2-perfect 6-cycle systems of complete equipartite graphs.  相似文献   

12.
A clique-transversal set D of a graph G is a set of vertices of G such that D meets all cliques of G. The clique-transversal number, denoted by τ c (G), is the minimum cardinality of a clique-transversal set in G. In this paper we give the exact value of the clique-transversal number for the line graph of a complete graph. Also, we give a lower bound on the clique-transversal number for 4-regular claw-free graphs and characterize the extremal graphs achieving the lower bound.  相似文献   

13.
Liguo He 《代数通讯》2013,41(11):4916-4922
Let G be a finite solvable group. The common divisor graph Γ(G) attached to G is a character degree graph. Its vertices are the degrees of the nonlinear irreducible complex characters of G, and different vertices m, n are adjacent if the greatest common divisor (m, n) > 1. In this article, we classify all graphs with four vertices that may occur as Γ(G) for solvable group G.  相似文献   

14.
15.
In this paper, we study the edge clique cover number of squares of graphs. More specifically, we study the inequality θ(G2)θ(G) where θ(G) is the edge clique cover number of a graph G. We show that any graph G with at most θ(G) vertices satisfies the inequality. Among the graphs with more than θ(G) vertices, we find some graphs violating the inequality and show that dually chordal graphs and power-chordal graphs satisfy the inequality. Especially, we give an exact formula computing θ(T2) for a tree T.  相似文献   

16.
A (finite or infinite) graph G is constructible if there exists a well‐ordering ≤ of its vertices such that for every vertex x which is not the smallest element, there is a vertex y < x which is adjacent to x and to every neighbor z of x with z < x. Particular constructible graphs are Helly graphs and connected bridged graphs. In this paper we study a new class of constructible graphs, the class of locally Helly graphs. A graph G is locally Helly if, for every pair (x,y) of vertices of G whose distance is d2, there exists a vertex whose distance to x is d ? 1 and which is adjacent to y and to all neighbors of y whose distance to x is at most d. Helly graphs are locally Helly, and the converse holds for finite graphs. Among different properties we prove that a locally Helly graph is strongly dismantable, hence cop‐win, if and only if it contains no isometric rays. We show that a locally Helly graph G is finitely Helly, that is, every finite family of pairwise non‐disjoint balls of G has a non‐empty intersection. We give a sufficient condition by forbidden subgraphs so that the three concepts of Helly graphs, of locally Helly graphs and of finitely Helly graphs are equivalent. Finally, generalizing different results, in particular those of Bandelt and Chepoi 1 about Helly graphs and bridged graphs, we prove that the Helly number h(G) of the geodesic convexity in a constructible graph G is equal to its clique number ω(G), provided that ω(G) is finite. © 2003 Wiley Periodicals, Inc. J Graph Theory 43: 280–298, 2003  相似文献   

17.
A graph G is perfectly orderable, if it admits an order < on its vertices such that the sequential coloring algorithm delivers an optimum coloring on each induced subgraph (H, <) of (G, <). A graph is a threshold graph, if it contains no P4, 2K2, and C4 as induced subgraph. A theorem of Chvátal, Hoàng, Mahadev, and de Werra states that a graph is perfectly orderable, if it is the union of two threshold graphs. In this article, we investigate possible generalizations of the above theorem. Hoàng has conjectured that, if G is the union of two graphs G1 and G2, then G is perfectly orderable whenever G1 and G2 are both P4‐free and 2K2‐free. We show that the complement of the chordless cycle with at least five vertices cannot be a counter‐example to this conjecture, and we prove a special case of it: if G1 and G2 are two edge‐disjoint graphs that are P4‐free and 2K2‐free, then the union of G1 and G2 is perfectly orderable. © 2000 John Wiley & Sons, Inc. J Graph Theory 33: 32–43, 2000  相似文献   

18.
The P3-graph of a finite simple graph G is the graph whose vertices are the 3-vertex paths of G, with adjacency between two such paths whenever their union is a 4-vertex path or a 3-cycle. In this paper we show that connected fnite simple graphs G and H with isomorphic P3-graphs are either isomorphic or part of three exceptional families. We also characterize all isomorphisms between P3-graphs in terms of the original graphs. © 1997 John Wiley & Sons, Inc. J Graph Theory 26:35–51, 1997  相似文献   

19.
In this paper we introduce a new hamiltonian-like property of graphs. A graph G is said to be cyclable if for each orientation D of G there is a set S of vertices such that reversing all the arcs of D with one end in S results in a hamiltonian digraph. We characterize cyclable complete multipartite graphs and prove that the fourth power of any connected graph G with at least five vertices is cyclable. If, moreover, G is two-connected then its cube is cyclable. These results are shown to be best possible in a sense. © 1998 John Wiley & Sons, Inc. J Graph Theory 28: 13–30, 1998  相似文献   

20.
We consider the following generalization of strongly regular graphs. A graph G is a Deza graph if it is regular and the number of common neighbors of two distinct vertices takes on one of two values (not necessarily depending on the adjacency of the two vertices). We introduce several ways to construct Deza graphs, and develop some basic theory. We also list all diameter two Deza graphs which are not strongly regular and have at most 13 vertices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号