首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A poly(vinyl chloride)-based membrane of 2,9-dimethyl-4,11-diphenyl-1,5,8,12-tetraazacyclotetradeca-1,4,8,11-tetraene (DDTCT) with sodium tetraphenyl borate (STB) as an anion excluder and dibutyl phthalate (DBP), dibutyl butylphosphonate (DBBP), tris(2-ethylhexyl) phosphate (TEP) and tributyl phosphate (TBP) as plasticizing solvent mediators was prepared and investigated as a Ga(III)-selective electrode. The best performance was observed with the membrane having the ligand-PVC-DBP-STB composition 1:4:1:1, which worked well over a wide concentration range (1.45 × 10−6 to 0.1 mol L−1) with a Nernstian slope of 28.7 mV per decade of activity between pH 4.0 and 10.0. This electrode showed a fast response time of 12 s and was used over a period of 100 days with good reproducibility (s = 0.3 mV). The selectivity coefficients for monovalent, divalent and trivalent cations indicate excellent selectivity for Ga(III) ions over a large number of cations. Anions such as Cl and SO42− do not interfere and the electrode also works satisfactorily in partially water-alcohol medium. The practical utility of the membrane sensor has also been observed in solutions contaminated with detergents, i.e., cetyltrimethylammonium bromide and sodium dodecyl sulfate and used for the determination of gallium in nickel alloy, fly-ash and biological samples.  相似文献   

2.
Enass M. Ghoneim 《Talanta》2010,82(2):646-652
A simple and precise square-wave adsorptive cathodic stripping voltammetry (SW-AdCSV) method has been described for simultaneous determination of Mn(II), Cu(II) and Fe(III) in water samples using a carbon paste electrode. In 0.1 mol L−1 acetate buffer (pH 5) containing 50 μmol L−1 of 2-(5′-bromo-2′-pyridylazo)-5-diethylaminophenol (5-Br-PADAP), Mn(II), Cu(II) and Fe(III) were simultaneously determined as metal-complexes with 5-Br-PADAP following preconcentration onto the carbon paste electrode by adsorptive accumulation at +1.0 V (vs. Ag/AgCl/3 M KCl). Insignificant interference from various cations (K+, Na+, Mg2+, Ca2+, Al3+, Bi3+, Sb3+, Se4+, Zn2+, Ni2+, Co2+, Cd2+, Pb2+, V5+, Ti4+ and NH4+), anions (HCO3, Cl, NO3−, SO42− and PO43−) and ascorbic acid was noticed. Limits of detection of 0.066, 0.108 and 0.093 μg L−1 and limits of quantitation of 0.22, 0.36 and 0.31 μg L−1 Mn(II), Cu(II) and Fe(III), respectively, were achieved by the described method. The described stripping voltammetry method was successfully applied for simultaneous determination of Mn(II), Cu(II) and Fe(III) in ground, tap and bottled natural water samples.  相似文献   

3.
In the search for gallium bioactive compounds five Ga(III) complexes, [GaIII(L-H)2](NO3), with tridentate salicylaldehyde semicarbazone derivatives as ligands (L) have been synthesized and characterized in the solid state and in solution by different techniques. The crystal structure of [GaIII(L4-H)2](NO3)·2H2O, where L4 is 3-ethoxysalicylaldehyde semicarbazone, was solved by X-ray diffraction methods. The gallium(III) ion is in a distorted octahedral environment, coordinated to two nearly planar and mutually perpendicular 3-ethoxysalicylaldehyde semicarbazonato anions acting as tridentate ligands through their phenol and carbonyl oxygen atoms and their azomethine nitrogen atom. Their biological potential has been explored by evaluating their activity on Mycobacterium tuberculosis, causative agent of tuberculosis, and their cytotoxicity on tumor cell lines. Three different human tumor cell lines were selected that show different degrees of resistance to metallodrugs: ovarian A2780 (low resistance), breast MCF7 (medium resistance) and prostate PC3 (high resistance) cells. Although the complexes have not shown activity on M. tuberculosis, complexation with gallium has led to the enhancement of the cytotoxic potencies of the organic compounds. Those complexes that contain a bromide substituent at the phenolate ring have shown the highest cytotoxicities. In particular, [GaIII(L2-H)2](NO3), where L2 is 5-bromosalicylaldehyde semicarbazone,·has shown a remarkable cytotoxicity on A2780 tumor cell line with an IC50 value of the same order than cisplatin (IC50 Ga-L2 = 2.4 ± 0.3 μM; IC50 cisplatin = 2.0 ± 0.1 μM, 72 h incubation at 37 °C). Interestingly, this complex has also shown moderate cytotoxicity against MCF7 and PC3 cells (IC50 MCF7 = 30 ± 6; IC50 PC3 = 18 ± 3 μM). Therefore, this gallium compound could be considered a promising wide spectrum potential anti-tumor agent.  相似文献   

4.
Gallium oxynitride, isostructural to hexagonal gallium nitride (h-GaN), was obtained by ammonia nitridation of a precursor prepared from the addition of citric acid to an aqueous solution of gallium nitrate. Gallium oxynitride produced at 750 °C had a small amount of gallium vacancies, and was formulated as (Ga0.890.11) (N0.66O0.34) where the symbol □ stands for gallium vacancy. Both the gallium vacancies and oxygen substituted for nitrogen were randomly distributed within the structure. The amount of vacancies decreased with nitridation temperatures in the range of 750-850 °C. Approximately, 10 at% Li+ was doped into the gallium oxynitride, using a similar preparation with the additional presence of lithium nitrate, resulted in the random substitution of Ga3+ in an atomic ratio of Li/Ga<1 at 750 °C. Oxygen was codoped with lithium and substituted nitrogen in the wurtzite-type crystal lattice. These substitutions reduced the electrical conductivity in the gallium oxynitride semiconductor. A new oxynitride, Li2Ga3NO4, was also obtained with Li2CN2 impurity using similar preparations from a mixture of Li/Ga?1. The crystal structure was isostructural with h-GaN, and was refined as P63mc with a=0.31674(1) nm, and c=0.50854(2) nm. The Ga and Li occupancies at the 2b site were refined to be 0.6085 and 0.3915, respectively, assuming that the other 2b site was randomly occupied with 1/5O and 4/5N. When the new compound was washed for over 1 min for the removal of Li2CN2 impurities, it was decomposed to a mixture of α-GaOOH and α-LiGaO2. The as-prepared product with Li/Ga=1 showed the highest intensity in yellow luminescence among the products under excitation at 254 nm.  相似文献   

5.
Zhang L  Guo X  Li H  Yuan Z  Liu X  Xu T 《Talanta》2011,85(5):2463-2469
A simple and rapid analytical method for the separation of trace amounts of gallium and germanium from aqueous solution by solid-phase extraction with nano-particles was developed. It was found that only Ga(III) could be quantitatively retained on nano-SiO2 in the pH range of 3-4 and 8-12 while Ge(IV) was not adsorbed, but both Ga(III) and Ge(IV) ions could be adsorbed quantitatively on nano-TiO2 within the pH range of 4-11. These two ions adsorbed by nano-particles could be desorbed quantitatively. Effects of acidity, concentration of elution solution and interfering ions on the recovery of the analytes were systematically investigated. The sorption data could be well interpreted by the Langmuir model. Based on the Langmuir model equation, the monolayer adsorption capacity of nano-SiO2/nano-TiO2 was calculated to be 4.26 mg g−1/19.68 mg g−1 for Ga(III)/Ge(IV). Moreover, thermodynamic functions, the change of free energy (ΔG0), enthalpy (ΔH0) and entropy (ΔS0) of the adsorption reaction were estimated for each metal ion. Experimental data were also evaluated in terms of kinetic characteristics of adsorption and the adsorption process for both metal ions followed well pseudo-second-order kinetics. Finally, the proposed method was applied to the determination of trace Ga(III) and Ge(IV) in some water samples using loaded nano-particles columns, and it is found that the recoveries of Ga(III) and Ge(IV) were obtained to be in the range of 96.4-105.0%. And the method was validated with certified reference material (GBW07311, GBW 07406) and the values obtained for Ga(III) and Ge(IV) were in good agreement with the certified values.  相似文献   

6.
An optical probe responsive to gallium(III) ion has been developed. The gallium sensing system was prepared by incorporating 4-(p-nitrophenyl azo)-pyrocatechol (NAP) as ionophore in a plasticized PVC membrane containing tributylphosphate (TBP) as plasticizer. The sensing membrane in contact with gallium ion at pH 3.5, changes color from yellow-brown to pink-brown. Under optimum conditions, the proposed membrane displayed a linear range of 5-83 μM with a limit of detection of 4 μM. The response time of the membrane was within 10-15 min depending on the concentration of Ga3+ ions. The selectivity of the probe towards gallium determination was found to be very good. Experimental results showed that the probe could be used as an effective tool in analyzing the gallium content of water samples.  相似文献   

7.
Synthesis and application of 2-amino-3-(α-N-phenylmethyl-2′-amino-1′,4′-naphthoquinonyl)-1,4 naphthoquinone (S) as a neutral ionophore for the determination of gallium(III) in PVC-based membrane sensors has been described. The sensor based on membrane composition (w/w, mg%); 5.0 (S):30.0 (PVC):5.0 (KTpClPB):60.0 (o-NPOE) is the best and showed a working range of 2.3 × 10−7 to 1.0 × 10−2 M with detection limit of 1.2 × 10−7 M. It can tolerate non-aqueous media up to 15% with a slope of 19.7 mV decade−1 of activity. The sensor has been used to assess the Ga(III) concentration in different natural samples (peach and tomato leaves, coal-fly-ash and river sediments). It can be used for 2.5 months without any distortion in results, after which, leaching of ionophore was observed from the membrane phase. The proposed sensor has shown a good dynamic response time of 11 s.  相似文献   

8.
Thallium(III), in the presence of other triply charged ions such as gallium, indium, bismuth and antimony in aqueous solution, was quantitatively and selectively extracted into 2-propanol/water phase by addition of NaCl ranging from 2.5 to 4.0 mol dm−3. The extraction efficiencies of gallium, indium, bismuth and antimony were much lower than that of thallium(III). Thus a maximal selective separation of thallium(III) from these elements could be attained using a 2-propanol/water mixture. Thallium(III) was extracted as TlCl4 with Na+. The detailed extraction mechanism in the presence of chloride, water in the organic phase and counter ions is discussed.  相似文献   

9.
Stabilisation of electrochemically deposited Prussian blue (PB) films on glassy carbon (GC) electrodes has been investigated and an enhancement in the stability of the PB films is reported if the electrodes are treated with tetrabutylammonium toluene-4-sulfonate (TTS) in the electrochemical activation step following the electrodeposition. A multi-enzyme PB based biosensor for sucrose detection was made in order to demonstrate that PB films can be coupled with an oxidase system. A tri-enzyme system, comprising glucose oxidase, mutarotase and invertase, was crosslinked with glutaraldehyde and bovine albumin serum on the PB modified glassy carbon electrode. The deposited PB operated as an electrocatalyst for electrochemical reduction of hydrogen peroxide, the final product of the enzyme reaction sequence. The electrochemical response was studied using flow injection analysis for the determination of sucrose, glucose and H2O2. The optimal concentrations of the immobilisation mixture was standardised as 8 U of glucose oxidase, 8 U of mutarotase, 16 U of invertase, 0.5% glutaraldehyde (0.025 μl) and 0.5% BSA (0.025 mg) in a final volume of 5 μl applied at the electrode surface (0.066 cm2). The biosensor exhibited a linear response for sucrose (4-800 μM), glucose (2-800 μM) and H2O2 (1-800 μM) and the detection limit was 4.5, 1.5 and 0.5 μM for sucrose, glucose and H2O2, respectively. The sample throughput was ca. 60 samples h−1. An increase in the operational and storage stability of the sucrose biosensor was also noted when the PB modified electrodes were conditioned in phosphate buffer containing 0.05 M TTS during the preparation of the PB films.  相似文献   

10.
The composition, overall stability constant and molar absorptivity of the chelate of gallium(III) ion with semimethylthymol blue, SMTB, were determined spectrophotometrically in acetate buffer (pH 4.5–5). A violet Ga(SMTB) chelate was formed with logarithmic overall stability constant of 18.0±0.1 (I=0.1) and molar absorptivity of 4.25×104l mol–1cm–1 (max 580 nm). SMTB is proposed as a new reagent for the spectrophotometric determination of micro-molar amounts of gallium(III). The colour development depends on time, temperature, pH and buffer species. The interference of different cations, anions and organic acids on gallium(III) determination was also investigated. Beer's law was obeyed for 3.5–31.3 gGa(III)/25ml (0.14–1.25 g ml–1). SMTB was used for the spectrophotometric determination of gallium in different grade minerals and ores and the results were of acceptable error and relative standard deviation. Comparison between the two suggested methods and atomic absorption spectrometry for Ga(III) determination was carried out.  相似文献   

11.
Summary A spectrofluorimetric method is proposed for the determination of gallium with 1-(2-pyridylazo)-2-naphthol as derivative reagent in sodium dodecyl sulphate micellar medium. Sensitivity is increased by a factor of 20 with respect to that obtained in 20% ethanol medium. The stoichiometry of the complex is 11. Optimum working conditions are about pH 4, 0.3% sodium dodecyl sulphate and absence of ethanol. The calibration graph is linear in the range 5–400 ppb of Ga(III) with a variation coefficient of 1.5% at 210 ppb of Ga for 10 replicates, and detection limit is 0.8 ppb. Main interferences are from copper and cobalt. Results obtained in the determination of Ga(III) in urine and aluminium samples show the validity of the method proposed.
Spektrofluorimetrische Bestimmung von Spuren Ga(III) in Aluminium und biologischen Proben mit 1-(2-Pyridylazo)-2-naphthol in micellarem Natriumdodecyl-sulfatmedium
  相似文献   

12.
A scheme for the determination of total As by electrothermal atomic absorption spectrometry (ETAAS) and the sum of toxicologically relevant arsenic species (As(III), As(V), monomethylarsonate (MMA) and dimethylarsinate (DMA) using hydride generation AAS (HGAAS) in fish samples was developed. Simple and fast microwave assisted extraction in tetramethylammonium hydroxide (TMAH, 0.075% m / v) or in water-methanol mixture (80 + 20 v / v) for 20 min is proposed for quantitative leaching of arsenic species from fish tissue. Total As was measured by ETAAS directly in the TMAH extract under optimal instrumental parameters (pyrolysis temperature 1400 °C and atomization temperature 2000 °C) with Pd as modifier ensuring thermal stabilization and isoformation of all extracted arsenic species. The analytical features of the method are as follows: limit of detection (LOD) 0.45 μg g− 1 (dry wt.), within-run and between-run precision in the range 4-8% and 5-12%, respectively, for arsenic contents 0.5-30 μg g− 1 and recoveries 98-102%. The sum of toxicologically relevant arsenic species (As(III) + As(V) + MMA + DMA) was determined by flow injection HGAAS directly from the TMAH extract or water-methanol mixture and trapping of arsines onto Zr-Ir coated graphite tube followed by ETAAS measurement. l-cysteine is used as reagent for leveling off responses of different arsenic species in the presence of TMAH or water-methanol mixture. The LODs achieved are 0.0038 and 0.0031 μg g− 1 (dry wt.), respectively, for fish extracts in TMAH and in water-methanol mixture. Within-batch and between-batch RSDs are in the range 3-5% and 4-7% for arsenic contents of 0.009-0.25 μg g− 1 (dry wt.) for TMAH extracts and 2-4% and 3-6% for methanol water extracts, respectively. Selective reaction media for generation of respective hydrides from arsenic species were recommended for further speciation purposes in methanol-water extracts, viz. citrate buffer (pH 5.2) for the determination of As(III), 0.2 mol L− 1 acetic acid for the determination of As(III) + DMA and 7 mol L− 1 hydrochloric acid for the determination of inorganic As(III) + As(V). LODs are 0.0035, 0.0051 and 0.0046 μg g− 1 (dry wt.) for As(III), DMA and As(V). The relative standard deviation is 4-8% for three arsenic species at As levels of 0.009-0.5 μg g− 1 (dry wt.). The accuracy of the proposed speciation scheme is confirmed by the analysis of certified reference materials.  相似文献   

13.
A new surface based on poly(vinylferrocenium) (PVF+)-modified platinum electrode was developed for determination of Hg2+ ions in aqueous solutions. The polymer was electrodeposited on platinum electrode by constant potential electrolysis as PVF+ClO4. Cl ions were then attached to the polymer matrix by anion exchange and the modified electrode was dipped into Hg2+ solution. Hg2+ was preconcentrated at the polymer matrix by adsorption and also complexation reaction with Cl. Detection of Hg2+ was carried out by differential pulse anodic stripping voltammetry (DPASV) after reduction of Hg2+. Mercury ions as low as 5 × 10−10 M could be detected with the prepared electrode and the relative standard deviation was calculated as 6.35% at 1 × 10−6 M concentration (n = 6). Interferences of Ag+, Pb2+ and Fe3+ ions were also studied at two different concentration ratios with respect to Hg2+. The developed electrode was applied to the determination of Hg2+ in water samples.  相似文献   

14.
In this work, a novel La(III) membrane sensor based on 8-amino-N-(2-hydroxybenzylidene)naphthylamine (AIP) is presented. This electrode reveals good selectivity for La3+ over a wide variety of lanthanides metal ions. Theoretical calculations and conductance study of AIP to lanthanum and some other metal ions were carried out and confirmed selectivity toward La(III) ions. The electrode comprises 7% AIP, 30% PVC, 61% NPOE and 2% KTpClPB. The sensor displays a linear dynamic range between 1.0 × 10−7 and 1.0 × 10−1 M, with a nice Nernstian slope of 20.3 ± 0.3 mV per decade and a detection limit of 8.0 × 10−8 M. The potentiometric response is independent of pH in the range of 4.0-9.0. The proposed sensor posses the advantage of short response time, and especially, very good selectivity towards a large number of cations, such as Sm(III), Ce(III, Pr(III), Yb(III) and Hg(II), low detection limit and wide linear dynamic range in comparison with former ones. The electrode can be used for at least seven weeks without any considerable divergence in the potentials. It was used as an indicator electrode in the potentiometric titration of La(III) ions with EDTA. The sensor was applied to the determination of La(III) ions concentration in binary mixtures. It was also applied for the determination of fluoride ions in mouth wash preparations.  相似文献   

15.
Gold electrode surface is modified via covalent attachment of a synthesized thiol functionalized with 8-hydroxyquinoline, p-((8-hydroxyquinoline)azo) benzenethiol (SHQ), for the first time. The behavior of the nanostructured electrode surface (Au–SHQ) is characterized by electrochemical techniques including cyclic and differential pulse voltammetry (CV and DPV), and electrochemical impedance spectroscopy (EIS). The modified surface is stable in a wide range of potentials and pHs. A surface pKa of 6.0 ± 0.1 is obtained for Au–SHQ electrode using surface acid/base titration curves constructed by CV and EIS measurements as a function of pH. These results helped to determine the charge state of the surface as a function of pH. The gold modified electrode surface showed good affinity for sensing the Al(III) ion at pH 5.5. The sensing process is based on (i) accumulation and complex formation between Al(III) from the solution phase and 8HQ function on the Au electrode surface (recognition step) and (ii) monitoring the impedance of the Au–SHQ–Al(III) complex against redox reaction rate of parabenzoquinone (PBQ) (signal transduction step). The PBQ is found to be a more suitable probe for this purpose, after testing several others. Thus, the sensor was tested for quantitative determination of Al(III) from the solution phase. At the optimized conditions, a linear response, from 1.0 × 10−11 to 1.2 × 10−5 M Al(III) in semi-logarithmic scale, with a detection limit of 8.32 × 10−12 M and mean relative standard deviation of 3.2% for n = 3 at 1.0 × 10−7 M Al(III) is obtained. Possible interferences from coexisting cations and anions are also studied. The results show that many ions do not interfere significantly with the sensor response for Al(III). Validity of the method and applicability of the sensor are successfully tested by determination of Al(III) in human blood serum samples.  相似文献   

16.
Contamination of groundwater with arsenic (As) is a major health risk through contamination of drinking and irrigation water supplies. In geochemically reducing conditions As is mostly present as As(III), its most toxic species. Various methods exist to determine As in water but these are not suitable for monitoring arsenic speciation at its original pH and without preparation. We present a method that uses cathodic stripping voltammetry (CSV) to determine reactive As(III) at a vibrating, gold, microwire electrode. The As(III) is detected after adsorptive deposition of As(OH)30, followed by a potential scan to measure the reduction current from As(III) to As(0). The method is suitable for waters of pH 7-12, has an analytical range of 1 nM to 100 μM As (0.07-7500 ppb) and a limit of detection of 0.5 nM with a 60 s deposition time. The As speciation protocol involves measuring reactive As(III) by CSV at the original pH and acidification to pH 1 to determine inorganic As(III) + As(V) by anodic stripping voltammetry (ASV) using the same electrode. Total dissolved As is determined by ASV after UV-digestion at pH 1. The method was successfully tested on various raw groundwater samples from boreholes in the UK and West Bengal.  相似文献   

17.
For the first time, the analytical application of integrate ionophore-transducer material based on magnetic graphene hybrids and 2,2-dithiodipyridine (DTDP) in solid-contact lanthanum (III) selective electrode is reported. The attachment of Fe3O4 nanoparticles (NPs) to graphene oxide (GO) for magnetic graphene hybrid is achieved by covalent bonding, and the universal problem, Fe3O4 NPs may easily leach out from the graphene during application, is successfully solved by the method above. The proposed electrode exhibits an excellent near-Nernstian response to lanthanum (III) ranging from 1.0 × 10−9 to 1.0 × 10−3 M with a slope of 17.81 mV/dec. Moreover, the excellent performance on fairly good selectivity, wide applicable pH range (3.0_8.0), fast response time (10 s) and long life time (2 months) reveal the superiority of the electrode. Most importantly, we have made a great improvement in the detection limit (2.75 × 10−10 M), which brings new dawn to the real-time detection of lanthanum (III) using ion selective electrode.  相似文献   

18.
Traces of Cd were determined by electrothermal atomic absorption spectrometry after electrochemical preconcentration on a commercial graphite ridge probe modified with Pd. The Pd electrochemically deposited on the probe surface served not only as the modifier but it also protected the graphite surface. Cd was electrodeposited at a controlled potential − 1.2 V (vs. saturated calomel electrode) using the Pd-modified graphite probe as a working electrode. The sensitivity of Cd determination remained unchanged for 300 electrodeposition and atomization cycles. The detection limit (3σblank) was improved with increasing time of electrolysis and was 1.2 ng l− 1 for a 10 min electrolysis time in the presence of 0.1 mol l− 1 NaNO3. The procedure was applied for the determination of Cd in (1 + 1) diluted seawater and in (1 + 1) diluted urine samples using the standard addition method.  相似文献   

19.
A hydride generation (HG) procedure has been described for determination of Pb by ICP-MS using potassium hexacyanomanganate(III), K3Mn(CN)6, as an additive to facilitate the generation of plumbane (PbH4). Potassium hexacyanomanganate(III) was prepared in acidic medium as it was unstable in water. The stability of hexacyanomanganate(III) was examined in dilute solutions of HCl, HNO3 and H2SO4. The solutions prepared in 1% v/v H2SO4 were found to be stable for over a period of 24 h. The least suitable medium was 1% v/v HNO3. For generation of plumbane, acidic hexacyanomanganate(III) and sample solutions were mixed on-line along a 5-cm long tygon tubing (1.14 mm i.d.) and then reacted with 2% m/v sodium borohydride (NaBH4). A concentration of 0.5% m/v K3Mn(CN)6 facilitated the generation of PbH4 remarkably. In comparison to H2SO4, HCl provided broader working range for which optimum concentration was 1% v/v. No significant interferences were noted from transition metals and hydride forming elements, up to 0.5 μg mL−1 levels, except Cu which depressed the signals severely. The depressive effects in the presence of 0.1 μg mL−1 Cu were alleviated by increasing the concentration of K3Mn(CN)6 to 2% m/v. Under these conditions, the sensitivity was enhanced by a factor of at least 42 to 48. The detection limit (3 s) was 0.008 μg L−1 for 208Pb isotope. Average signal-to-noise ratio (S/N) ranged between 18 and 20 for 1.0 μg mL−1 Pb solution. The accuracy of the method was verified by analysis of several certified reference materials, including Nearshore seawater (CASS-4), Bone ash (SRM 1400), and Mussel tissue (SRM 2976). The procedure was also successfully applied to the determination of Pb in coastal seawater samples by ICP-MS.  相似文献   

20.
Cofré P  Brinck K 《Talanta》1992,39(2):127-136
Reproducibility for successive determinations with a hanging mercury drop electrode is assessed in relation to solution stirring, drop size and back-diffusion to the mercury thread. The effect of experimental parameters such as drop size, deposition time and gallium concentration on the observed stripping current is investigated. The interference of zinc present in a 0.5M NaSCN + 4.2M NaClO(4) supporting electrolyte on the gallium detection limit and calibration plots is described. Formation of an intermetallic compound with a Zn:Ga ratio of 2:3 and its destruction by co-deposition of zinc with Sb are reported. A detection limit of 10(-8)M gallium was obtained in the presence of 10(-5)M Sb(III).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号