首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Comprehensive studies on platinum‐catalyzed hydrosilylation of a wide range of terminal and internal alkynes with spherosilicate (HSiMe2O)8Si8O12 ( 1 a ) were performed. The influence of the reaction parameters and the types of reagents and catalysts on the efficiency of the process, which enabled the creation of a versatile and selective method to synthesize olefin octafunctionalized octaspherosilicates, was studied in detail. Within this work, twenty novel 1,2‐(E)‐disubstituted and 1,1,2‐(E)‐trisubstituted alkenyl‐octaspherosilicates ( 3 a – m , 6 n – t ) were selectively obtained with high yields, and fully characterized (1H, 13C, 29Si NMR, FTIR, MALDI TOF or TOF MS ES+ analysis). Moreover, the molecular structure of the compound (Me3Si(H)C=C(H)SiMe2O)8Si8O12 ( 3 a ) was determined by X‐ray crystallography for the first time. The developed procedures are the first that allow selective hydrosilylation of terminal silyl, germyl, aryl, and alkyl alkynes with 1 a , as well as the direct introduction of sixteen functional groups into the 1 a structure by the hydrosilylation of internal alkynes. This method constituted a powerful tool for the synthesis of hyperbranched compounds with a Si?O based cubic core. The resulting products, owing to their unique structure and physicochemical properties, are considered novel, multifunctional, hybrid, and nanometric building blocks, intended for the synthesis of star‐shaped molecules or macromolecules, as well as nanofillers and polymer modifiers. In the presented syntheses, commercially available reagents and catalysts were used, so these methods can be easily repeated, rapidly scaled up, and widely applied.  相似文献   

2.
A new kind of soluble structure‐ordered ladder‐like polysilsesquioxane with reactive side‐chain 2‐(4‐chloromethyl phenyl) ethyl groups ( L ) was first synthesized by stepwise coupling polymerization. The monomer, 2‐(4‐chloromethyl phenyl) ethyltrichlorosilane ( M ), was synthesized successfully by hydrosilylation reaction with dicyclopentadienylplatinum(II) chloride (Cp2PtCl2) ­catalyst. Monomer and polymer structures were characterized by FT‐IR, 1H‐NMR, 13C‐NMR, 29Si‐NMR, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), vapor pressure osmometry (VPO) and X‐ray diffraction (XRD). This novel reactive ladder‐like polymer has promise potential applications as initiator for atom transfer radical polymerization, and as precursor for a variety of advanced functional polymers. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

3.
Supported Pd catalysts are active in catalyzing the highly exothermic methane combustion reaction but tend to be deactivated owing to local hyperthermal environments. Herein we report an effective approach to stabilize Pd/SiO2 catalysts with porous Al2O3 overlayers coated by atomic layer deposition (ALD). 27Al magic angle spinning NMR analysis showed that Al2O3 overlayers on Pd particles coated by the ALD method are rich in pentacoordinated Al3+ sites capable of strongly interacting with adjacent surface PdOx phases on supported Pd particles. Consequently, Al2O3‐decorated Pd/SiO2 catalysts exhibit active and stable PdOx and Pd–PdOx structures to efficiently catalyze methane combustion between 200 and 850 °C. These results reveal the unique structural characteristics of Al2O3 overlayers on metal surfaces coated by the ALD method and provide a practical strategy to explore stable and efficient supported Pd catalysts for methane combustion.  相似文献   

4.

The study is devoted to one-pot reaction of 1,3-dimethylbarbituric acid with aromatic aldehydes and ammonium acetate using Fe3O4 nanoparticles as efficient and magnetically recyclable catalysts. Aromatic aldehydes substituted with electron-withdrawing groups or none, reacted successfully with 1,3-dimethylbarbituric acid and ammonium acetate to give new pyrimido[5′,4′:5,6]pyrido[2,3-d]pyrimidine derivatives (can be also named as pyrido[2,3-d:6,5-d′]dipyrimidines) in high yields over relatively short reaction time. The Knoevenagel condensation products were isolated using aromatic aldehydes bearing electron-donating substituents. The catalyst could be efficiently used for four times without substantial reduction in its activity. The new products were characterized on the basis of FT-IR, 1H NMR and 13C NMR spectral data.

  相似文献   

5.
Dimeric cyclotetramethylene carbonate (TeMC)2 was polymerized in bulk at 185°C. Either nBuSnCl3 or Sn(II)2-ethylhexanoate (SnOct2) were used as catalysts. SnOct2 proved to be somewhat less reactive, but high yields (up to 93%) and high viscosities (νinh up to 0.85 dL/g) were obtained with both catalysts. Viscosity-average molecular weights (Mv) in the range of 50–75 × 103 were determined. The isolated crystalline poly(tetramethylene carbonate)s were characterized by IR, 1H- and 13C-NMR spectra, DSC measurements and WAXD powder pattern. CH2OH and octoate end groups were detected by means of 1H-NMR spectroscopy when SnOct2 was used as initiator, but ether groups were absent. DSC measurements revealed that poly(tetramethylene carbonate) is a slowly crystallizing polymer with a degree of crystallinity below 50% and a melting temperature in the range of 64–69°C depending on the molecular weight. Thermogravimetric analyses proved that polyTeMC decomposes completely between 240 and 340°C without leaving a residue. CO2 and tetrahydrofuran were the main degradation products. © 1996 John Wiley & Sons, Inc.  相似文献   

6.
Liquid-state 29Si NMR was used to investigate the hydrolysis and condensation kinetics of ammonia-catalyzed tetraethoxysilane (TEOS) in methanol system. The reactive rate constants were calculated by applying first-order reaction approximation and the steady state approximation theory. The reaction orders with respect to TEOS, ammonia and water were derived, as well as the activation energies and the Arrhenius constants. It was found that the formation of intermediate species Si(OH)(OEt)3 was the rate-limiting step and its reaction rate equation was r TEOS=7.41×10−3[TEOS][NH3]0.333[H2O]0.227. Higher reactive temperature benefited the hydrolysis of TEOS. The results presented here indicated quantificationally that the formation of colloidal SiO2 particles was controlled by the initial hydrolysis of TEOS.  相似文献   

7.
The 1,3‐dipolar cycloaddition reactions of 2‐diazocyclohexane‐1,3‐dione ( 7a ; Table 1) and of alkyl diazopyruvates ( 11a – e ; Table 3) to 2,3‐dihydrofuran and other enol ethers have been investigated in the presence of chiral transition metal catalysts. With RhII catalysts, the cycloadditions were not enantioselective, but those catalyzed by [RuIICl2( 1a )] and [RuIICl2( 1b )] proceeded with enantioselectivities of up to 58% and 74% ee, respectively, when diazopyruvates 11 were used as substrates. The phenyliodonium ylide 7c yielded the adduct 8a in lower yield and poorer selectivity than the corresponding diazo precursor 7a (Table 2) upon decomposition with [Ru(pybox)] catalysts. This suggests that ylide decomposition by RuII catalysts, contrary to that of the corresponding diazo precursors, does not lead to Ru‐carbene complexes as reactive intermediates. Our method represents the first reproducible, enantioselective 1,3‐cycloaddition of these types of substrates.  相似文献   

8.
[RuLCl(p ‐cymene)] (L = N ‐arylsulfonylphenylenediamine) complexes ( 2 a – d ) were synthesized from the reaction between [Ru(p ‐cymene)Cl2]2 and ligand. Additionally, SBA‐15–[RuLCl(p ‐cymene)] derived catalysts ( 3 a – d ) were successfully immobilized onto mesoporous silica (SBA‐15) by an easily accessible approach. The structural elucidations of 2 a – d and 3 a – d were carried out with various methods such as 1H NMR, 13C NMR and infrared spectroscopies, elemental analysis, thermogravimetric/differential thermal analysis, nitrogen adsorption–desorption and scanning electron microscopy/energy‐dispersive X‐ray analysis. The Ru(II) complexes and materials were found to be highly active and selective catalysts for the transfer hydrogenation (TH) reaction of aldehydes and ketones. The influence of various 1,2‐phenylenediamines on the reactivity of the catalysts (complexes or materials) was studied and the catalysts ( 2 d and 3 d ) with a 4,5‐dichlorophenylenediamine substituent showed the best activity (the maximum turnover frequencies are 2916 and 2154 h−1 for TH of 4‐fluoroacetophenone, and 6000 and 4956 h−1 for TH of 4‐chlorobenzaldehyde).  相似文献   

9.
In the search for highly reactive oxidants we have identified high-valent metal–fluorides as a potential potent oxidant. The high-valent Ni–F complex [NiIII(F)(L)] ( 2 , L=N,N′-(2,6-dimethylphenyl)-2,6-pyridinedicarboxamidate) was prepared from [NiII(F)(L)] ( 1 ) by oxidation with selectfluor. Complexes 1 and 2 were characterized by using 1H/19F NMR, UV-vis, and EPR spectroscopies, mass spectrometry, and X-ray crystallography. Complex 2 was found to be a highly reactive oxidant in the oxidation of hydrocarbons. Kinetic data and products analysis demonstrate a hydrogen atom transfer mechanism of oxidation. The rate constant determined for the oxidation of 9,10-dihydroanthracene (k2=29 m −1 s−1) compared favorably with the most reactive high-valent metallo-oxidants. Complex 2 displayed reaction rates 2000–4500-fold enhanced with respect to [NiIII(Cl)(L)] and also displayed high kinetic isotope effect values. Oxidative hydrocarbon and phosphine fluorination was achieved. Our results provide an interesting direction in designing catalysts for hydrocarbon oxidation and fluorination  相似文献   

10.
In the search for highly reactive oxidants we have identified high‐valent metal–fluorides as a potential potent oxidant. The high‐valent Ni–F complex [NiIII(F)(L)] ( 2 , L=N,N′‐(2,6‐dimethylphenyl)‐2,6‐pyridinedicarboxamidate) was prepared from [NiII(F)(L)]? ( 1 ) by oxidation with selectfluor. Complexes 1 and 2 were characterized by using 1H/19F NMR, UV‐vis, and EPR spectroscopies, mass spectrometry, and X‐ray crystallography. Complex 2 was found to be a highly reactive oxidant in the oxidation of hydrocarbons. Kinetic data and products analysis demonstrate a hydrogen atom transfer mechanism of oxidation. The rate constant determined for the oxidation of 9,10‐dihydroanthracene (k2=29 m ?1 s?1) compared favorably with the most reactive high‐valent metallo‐oxidants. Complex 2 displayed reaction rates 2000–4500‐fold enhanced with respect to [NiIII(Cl)(L)] and also displayed high kinetic isotope effect values. Oxidative hydrocarbon and phosphine fluorination was achieved. Our results provide an interesting direction in designing catalysts for hydrocarbon oxidation and fluorination  相似文献   

11.
Phenol-urea-formaldehyde (PUF) resins with different catalysts [calcium oxide (CaO), sodium carbonate (Na2CO3), zinc oxide (ZnO), and magnesium oxide (MgO)] were prepared to accelerate the cure of the resin at low temperature. The cure-acceleration effects of catalysts on chemical structure and cure characteristics of PUF resins were investigated by using both liquid 13C nuclear magnetic resonance (NMR) and differential scanning calorimetry (DSC). The liquid 13C NMR analysis indicated that the catalyst such as CaO seemed to present a retarded effect on the polycondensation reaction of phenolic components with urea units, while the Na2CO3 appeared to promote the self-condensation reaction of phenolic methylol groups at para position toward the formation of para-para methylene linkage. Both ZnO and MgO in PUF resins promoted self-condensation reaction of para methylol groups and condensation reaction of ortho methylol groups with para methylol groups. The catalysts such as Na2CO3, ZnO, and MgO can make PUF resins cure at a low temperature. Among these catalysts, the MgO had the most significant accelerating effect on polycondensation and cure reaction of PUF resin.  相似文献   

12.
Dimethyl(salicylaldiminato[N:O])cobalt complexes [CoMe2(2‐O‐C6H1R1R2 R3‐CH=NR4)L2] (L=PMe3) ( 1 ‐ 6 ) have been prepared through the reaction of [CoMe3(PMe3)3] with the corresponding substituted salicylaldimine. The complexes were characterized with IR, 1H NMR, 13C NMR, 31P NMR and elemental analyses. The X‐ray crystal structure of complex 1 shows an octahedral coordination of cobalt, with two equatorial cis‐methyl groups opposite to the planar N:O‐chelate ring.  相似文献   

13.
Summary: A general method of measurement of polymer hydrogen bond (HB) cooperativity using a low-molecular weight model ligand named marker and two independent methods of 2H NMR is presented. As marker, a deutero-compound chemically similar to the functional groups of one of the polymers is used, e.g. pyridine-d5 in the investigated interaction of poly(4-vinylpyridine) with poly(4-vinylphenol) or acetic acid-d4 in the interaction of polyacrylic acid with poly(4-vinylphenol) reported here. The method is based on the fact that a substantial fraction of the marker, originally bound to the groups of one of the polymers, is liberated by the cooperative interaction between the two polymers. For the establishment of the fraction of the bound marker before and after mixing the polymers, 2H NMR quadrupolar relaxation or 2H PFG NMR diffusion measurement can be used with comparable precision. In both these methods, the results must be normalized to a standard viscosity using the relaxation or diffusion of an added inert compound such as CDCl3.  相似文献   

14.
Heterogeneous dirhodium(II) catalysts based on environmentally benign and biocompatible cellulose nanocrystals (CNC‐Rh2) as support material were obtained by ligand exchange between carboxyl groups on the CNC surface and Rh2(OOCCF3)4, as was confirmed by solid‐state 19F and 13C NMR spectroscopy. On average, two CF3COO? groups are replaced during ligand exchange, which is consistent with quantitative analysis by a combination of 19F NMR spectroscopy and thermogravimetry. CNC‐Rh2 catalysts performed well in a model cyclopropanation reaction, in spite of the low dirhodium(II) content on the CNC surface (0.23 mmol g?1). The immobilization through covalent bonding combined with the separate locations of binding positions and active sites of CNC‐Rh2 guarantees a high stability against leaching and allows the recovery and reuse of the catalyst during the cyclopropanation reaction.  相似文献   

15.
A series of six-coordinate ruthenium(II) complexes [Ru(CO)(L x )(B)] (B = PPh3, AsPh3 or Py; L x = unsymmetrical tetradentate Schiff base, x = 5–8; L5= salen-2-hyna, L6= Cl-salen-2-hyna, L7= valen-2-hyna, L8= o-hyac-2-hyna) have been prepared by reacting [RuHCl(CO)(EPh3)2(B)] (E = P or As) with unsymmetrical Schiff bases in benzene under reflux. The new complexes have been characterized by analytical and spectroscopic (infrared, electronic, 1H, 31P, and 13C NMR) data. An octahedral structure has been assigned for all the complexes. The new complexes are efficient catalysts for the transfer hydrogenation of ketones and also exhibit catalytic activity for the carbon–carbon coupling reactions.  相似文献   

16.
Monocyclopendienyltitanium trichloride (CpTiCl3) was supported on polymer carriers with different hydroxyl contents, and the supported catalysts were used for styrene polymerization. The supported catalysts exhibited high activity even at low Al/Ti ratios and increased the molecular weight of the products, indicating that polymer carriers could stabilize the active sites. The polymers prepared with unsupported and supported catalysts were extracted with boiling n‐butanone and characterized by carbon nuclear magnetic resonance (13C NMR) and differential scanning calorimetry. The polymers obtained by supported catalysts had a high fraction of boiling n‐butanone‐insoluble part and high melting temperatures, but 13C NMR results showed that syndiotacticity decreased compared with that of polymers prepared with an unsupported catalyst. ESR study on the supported catalysts confirmed that the active sites supported on the carrier dropped into the solution and formed active sites the same as those in the unsupported system when they reacted with methylaluminoxane. 13C NMR analysis showed that the polymerization mechanism of the supported active sites was an active‐site controlled mechanism instead of a chain‐end controlled mechanism of the unsupported active sites. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 127–135, 2000  相似文献   

17.
New macrocyclic Schiff base Pd(II) compounds were synthesized by treating N4 and N2O2 macrocycles with palladium chloride in a 1 : 1 ratio. The resulting macrocyclic compounds were characterized by elemental, IR, 1H-NMR, 13C-NMR, mass, molar conductance, magnetic susceptibility, electronic spectra, and thermal analysis. These compounds were used as catalysts in the development of an efficient catalytic method for reduction of organic substrates having nitro, olefinic, acetylenic, and aldehyde groups under mild reaction conditions. The biological activities of all the macrocycles and macrocyclic Pd(II) compounds have been tested against gram positive (Bacillus subtilis and Staphylococcus aureus) and gram negative (Escherichia coli and Klebsiella pneumonia) bacteria and found to be more active than commercially available antibacterial drugs like Streptomycin and Ampicillin.  相似文献   

18.
Two cis-1,2-diol-type chiral ligands (T 1 and T 2 ) and their tri-coordinated chiral dioxaborinane (T (1–2) B (1–2) ) and four-coordinated chiral dioxaborinane adducts with 4-tert-butyl pyridine sustained by N → B dative bonds (T (1–2) B (1–2) -N) were synthesized and characterized by various spectroscopic techniques such as NMR (1H, 13C, and 11B), FT-IR and UV–Vis spectroscopy, LC–MS/MS, and elemental analysis. It was suggested that both ferrocene and trifluoromethyl groups played key roles in the catalytic and biological studies because they could tune the solubility of the chiral dioxaborinane complexes and adjust the strength of intermolecular interactions. To assess the biological activities of newly synthesized chiral dioxaborinane compounds, DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging, reducing power, antibacterial, DNA binding, and DNA cleavage activities were tested. Then, all chiral dioxaborinane complexes were investigated as catalysts for the asymmetric transfer hydrogenation of various ketones under suitable conditions. The results indicated that the chiral dioxaborinane catalysts performed well with high yields.  相似文献   

19.
A series of in situ‐generated ruthenium hydride complexes Ru(PPh3)2(CO)H(Ln) (n = a – h ) incorporating a Schiff base ligand was investigated for the isomerization of olefins. 1H‐NMR was used to characterize the new hydride species in combination with 31P‐NMR. Allylbenzene and 1‐octene were used as model substrates. Temperature, solvents and catalyst/substrate mole ratio were taken into account as parameters to optimize the isomerization reaction. All catalysts showed the best performance in 2‐butanol, suggesting that the catalytic activity depends not only strongly on the steric and electronic environment of the ruthenium but also on the chosen solvent. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
Three distinct functionalisation strategies have been applied to the in,in‐[{RuII(trpy)}2(μ‐bpp)(H2O)2]3+ (trpy=2,2′:6′,2′′‐terpyridine, bpp=bis(pyridine)pyrazolate) water‐oxidation catalyst framework to form new derivatives that can adsorb onto titania substrates. Modifications included the addition of sulfonate, carboxylate, and phosphonate anchoring groups to the terpyridine and bis(pyridyl)pyrazolate ligands. The complexes were characterised in solution by using 1D NMR, 2D NMR, and UV/Vis spectroscopic analysis and electrochemical techniques. The complexes were then anchored on TiO2‐coated fluorinated tin oxide (FTO) films, and the reactivity of these new materials as water‐oxidation catalysts was tested electrochemically through controlled‐potential electrolysis (CPE) with oxygen evolution detected by headspace analysis with a Clark electrode. The results obtained highlight the importance of the catalyst orientation with respect to the titania surface in regard to its capacity to catalytically oxidize water to dioxygen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号