首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
For the first time, hierarchically porous carbon materials with a sandwich‐like structure are synthesized through a facile and efficient tri‐template approach. The hierarchically porous microstructures consist of abundant macropores and numerous micropores embedded into the crosslinked mesoporous walls. As a result, the obtained carbon material with a unique sandwich‐like structure has a relatively high specific surface (1235 m2 g?1), large pore volume (1.30 cm3 g?1), and appropriate pore size distribution. These merits lead to a comparably high specific capacitance of 274.8 F g?1 at 0.2 A g?1 and satisfying rate performance (87.7 % retention from 1 to 20 A g?1). More importantly, the symmetric supercapacitor with two identical as‐prepared carbon samples shows a superior energy density of 18.47 Wh kg?1 at a power density of 179.9 W kg?1. The asymmetric supercapacitor based on as‐obtained carbon sample and its composite with manganese dioxide (MnO2) can reach up to an energy density of 25.93 Wh kg?1 at a power density of 199.9 W kg?1. Therefore, these unique carbon material open a promising prospect for future development and utilization in the field of energy storage.  相似文献   

2.
Highly dispersed Ni nanoparticles (NPs) and abundant functional N‐species were integrated into ultrathin carbon nanosheets by using a facile and economical sol–gel route. Embedded‐ and anchored‐type configurations were achieved for the dispersion of Ni NPs in/on N‐rich carbon nanosheets. The anchored‐type composite exhibited outstanding pseudocapacitance of 2200 F g?1 at 5 A g?1 with unusual rate capability and extraordinary cyclic stability over 20 000 cycles with little capacitance decay. Aqueous asymmetric supercapacitors fabricated with this composite cathode demonstrated a high energy density of 51.3 Wh kg?1 at a relatively large power density of 421.6 W kg?1, along with outstanding cyclic stability. This approach opens an attractive direction for enhancing the electrochemical performances of metal‐based supercapacitors and can be generalized to design high‐performance energy‐storage devices.  相似文献   

3.
A hierarchical hollow hybrid composite, namely, MnO2 nanosheets grown on nitrogen‐doped hollow carbon shells (NHCSs@MnO2), was synthesized by a facile in situ growth process followed by calcination. The composite has a high surface area (251 m2g?1) and mesopores (4.5 nm in diameter), which can efficiently facilitate transport during electrochemical cycling. Owing to the synergistic effect of NHCSs and MnO2, the composite shows a high specific capacitance of 306 F g?1, good rate capability, and an excellent cycling stability of 95.2 % after 5000 cycles at a high current density of 8 A g?1. More importantly, an asymmetric supercapacitor (ASC) assembled by using NHCSs@MnO2 and activated carbon as the positive and negative electrodes exhibits high specific capacitance (105.5 F g?1 at 0.5 A g?1 and 78.5 F g?1 at 10 A g?1) with excellent rate capability, achieves a maximum energy density of 43.9 Wh kg?1 at a power density of 408 W kg?1, and has high stability, whereby the ASC retains 81.4 % of its initial capacitance at a current density of 5 A g?1 after 4000 cycles. Therefore, the NHCSs@MnO2 electrode material is a promising candidate for future energy‐storage systems.  相似文献   

4.
A three‐dimensional (3D) hollow CoWO4 composite grown on Ni‐foam (3D?H CoWO4/NF) based on a flower‐like metal‐organic framework (MOF) is designed by utilizing a facile dipping and hydrothermal approach. The 3D?H CoWO4/NF not only possesses large specific areas and rich active sites, but also accommodates volume expansion/contraction during charge/discharge processes. In addition, the unique structure facilitates fast electron/ion transport of 3D?H CoWO4/NF. Meanwhile, a series of characterization measurements demonstrate the appropriate morphology and excellent electrochemical performance of the material. The 3D?H CoWO4/NF possesses a high specific capacitance of 1395 F g?1, an excellent cycle stability with 89% retention after 3000 cycles and superior rate property. Furthermore, the 3D?H CoWO4/NF can be used as a cathode to configurate an asymmetric supercapacitor (ASC), and 3D?H CoWO4/NF//AC shows a good energy density (29.0 W h kg?1). This work provides a facile method for the preparation of 3D‐hollow electrode materials with high electrochemical capability for advanced energy storage devices.  相似文献   

5.
A mesoporous flake‐like manganese‐cobalt composite oxide (MnCo2O4) is synthesized successfully through the hydrothermal method. The crystalline phase and morphology of the materials are characterized by X‐ray diffraction, field‐emission scanning electron microscopy, transmission electron microscopy, and Brunauer–Emmett–Teller methods. The flake‐like MnCo2O4 is evaluated as the anode material for lithium‐ion batteries. Owing to its mesoporous nature, it exhibits a high reversible capacity of 1066 mA h g?1, good rate capability, and superior cycling stability. As an electrode material for supercapacitors, the flake‐like MnCo2O4 also demonstrates a high supercapacitance of 1487 F g?1 at a current density of 1 A g?1, and an exceptional cycling performance over 2000 charge/discharge cycles.  相似文献   

6.
Pumpkin has been employed for the first time as a renewable, low‐cost precursor for the preparation of porous carbon materials with excellent performance. Unlike most other precursors, pumpkin is rich in sugars and starch, and it has advantageous properties for large‐scale production. The as‐prepared materials adopted a unique morphology that consisted of numerous fused sphere‐like carbon grains with a high specific surface area (2968 m2 g?1), abundant micro and mesopores, and excellent electrochemical properties. The pumpkin‐derived activated carbon (PAC) material not only exhibited a high specific capacitance of 419 F g?1, but also showed considerable cycling stability, with 93.6 % retention after 10 000 cycles. Moreover, a symmetrical supercapacitor that was based on PAC showed a high energy density of 22.1 W h kg?1 in aqueous electrolyte. These superior properties demonstrate that PAC holds great promise for applications in electrochemical energy‐storage devices.  相似文献   

7.
The sodium‐ion battery is a promising battery technology owing to its low price and high abundance of sodium. However, the sluggish kinetics of sodium ion makes it hard to achieve high‐rate performance, therefore impairing the power density. In this work, a fiber‐in‐tube Co9S8‐carbon(C)/Co9S8 is designed with fast sodiation kinetics. The experimental and simulation analysis show that the dominating capacitance mechanism for the high Na‐ion storage performance is due to abundant grain boundaries, three exposed layer interfaces, and carbon wiring in the design. As a result, the fiber‐in‐tube hybrid anode shows a high specific capacity of 616 mAh g?1 after 150 cycles at 0.5 A g?1. At 1 A g?1, a capacity of ca. 451 mAh g?1 can be achieved after 500 cycles. More importantly, a high energy density of 779 Wh kg?1 and power density of 7793 W kg?1 can be obtained simultaneously.  相似文献   

8.
Here, carbon nanotube@N‐doped mesoporous carbon (CNT@N‐PC) composites were synthesized by using resorcinol‐formaldehyde resin as carbon source, ionic liquids (ILs) as template, and nitrogen sources and tetraethyl orthosilicate (TEOS) as assistant agent. The use of ILs‐modified CNT with nitrogen and TEOS facilitated the generation of a richer mesoporous structure. The obtained CNT@N‐PC was composed of a CNT core and mesoporous carbon particles around it. CNT@N‐PC showed a 3D network structure like “dewy cobwebs” and had a high surface area of 857 m2 g?1, uniform pore size distribution (3.0 nm), and suitable N content (4.9 at.%). When used as supercapacitor electrode, the CNT@N‐PC exhibited a high specific capacitance (244 F g?1 at 1 A g?1), good rate capability and favorable capacitance retention (92.5 % capacitive retention after 5000 cycles), demonstrating the potential for application in high‐performance supercapacitors.  相似文献   

9.
Tin oxide nanoparticles (SnO2 NPs) have been encapsulated in situ in a three‐dimensional ordered space structure. Within this composite, ordered mesoporous carbon (OMC) acts as a carbon framework showing a desirable ordered mesoporous structure with an average pore size (≈6 nm) and a high surface area (470.3 m2 g?1), and the SnO2 NPs (≈10 nm) are highly loaded (up to 80 wt %) and homogeneously distributed within the OMC matrix. As an anode material for lithium‐ion batteries, a SnO2@OMC composite material can deliver an initial charge capacity of 943 mAh g?1 and retain 68.9 % of the initial capacity after 50 cycles at a current density of 50 mA g?1, even exhibit a capacity of 503 mA h g?1 after 100 cycles at 160 mA g?1. In situ encapsulation of the SnO2 NPs within an OMC framework contributes to a higher capacity and a better cycling stability and rate capability in comparison with bare OMC and OMC ex situ loaded with SnO2 particles (SnO2/OMC). The significantly improved electrochemical performance of the SnO2@OMC composite can be attributed to the multifunctional OMC matrix, which can facilitate electrolyte infiltration, accelerate charge transfer, and lithium‐ion diffusion, and act as a favorable buffer to release reaction strains for lithiation/delithiation of the SnO2 NPs.  相似文献   

10.
A series of hierarchical activated mesoporous carbons (AMCs) were prepared by the activation of highly ordered, body‐centered cubic mesoporous phenolic‐resin‐based carbon with KOH. The effect of the KOH/carbon‐weight ratio on the textural properties and capacitive performance of the AMCs was investigated in detail. An AMC prepared with a KOH/carbon‐weight ratio of 6:1 possessed the largest specific surface area (1118 m2 g?1), with retention of the ordered mesoporous structure, and exhibited the highest specific capacitance of 260 F g?1 at a current density of 0.1 A g?1 in 1 M H2SO4 aqueous electrolyte. This material also showed excellent rate capability (163 F g?1 retained at 20 A g?1) and good long‐term electrochemical stability. This superior capacitive performance could be attributed to a large specific surface area and an optimized micro‐mesopore structure, which not only increased the effective specific surface area for charge storage but also provided a favorable pathway for efficient ion transport.  相似文献   

11.
Three‐dimensional, vertically aligned MnO/nitrogen‐doped graphene (3D MnO/N‐Gr) walls were prepared through facile solution‐phase synthesis followed by thermal treatment. Polyvinylpyrrolidone (PVP) was strategically added to generate cross‐links to simultaneously form 3D wall structures and to incorporate nitrogen atoms into the graphene network. The unique wall features of the as‐prepared 3D MnO/N‐Gr hybirdes provide a large surface area (91.516 m2 g?1) and allow for rapid diffusion of the ion electrolyte, resulting in a high specific capacitance of 378 F g?1 at 0.25 A g?1 and an excellent charge/discharge stability (93.7 % capacity retention after 8000 cycles) in aqueous 1 m Na2SO4 solution as electrolyte. Moreover, the symmetric supercapacitors that were rationally designed by using 3D MnO/N‐Gr hybrids exhibit outstanding electrochemical performance in an organic electrolyte with an energy density of 90.6 Wh kg?1 and a power density of 437.5 W kg?1.  相似文献   

12.
Hierarchical hollow structures for electrode materials of supercapacitors could enlarge the surface area, accelerate the transport of ions and electrons, and accommodate volume expansion during cycling. Besides, construction of heterostructures would enhance the internal electric fields to regulate the electronic structures. All these features of hierarchical hollow heterostructures are beneficial for promoting the electrochemical properties and stability of electrode materials for high‐performance supercapacitors. Herein, CoO/Co‐Cu‐S hierarchical tubular heterostructures (HTHSs) composed of nanoneedles are prepared by an efficient multi‐step approach. The optimized sample exhibits a high specific capacity of 320 mAh g?1 (2300 F g?1) at 2.0 A g?1 and outstanding cycling stability with 96.5 % of the initial capacity retained after 5000 cycles at 10 A g?1. Moreover, an all‐solid‐state hybrid supercapacitor (HSC) constructed with the CoO/Co‐Cu‐S and actived carbon shows a stable and high energy density of 90.7 Wh kg?1 at a power density of 800 W kg?1.  相似文献   

13.
Porous nitrogen‐doped carbon nanotubes (PNCNTs) with a high specific surface area (1765 m2 g?1) and a large pore volume (1.28 cm3 g?1) have been synthesized from a tubular polypyrrole (T‐PPY). The inner diameter and wall thickness of the PNCNTs are about 55 nm and 22 nm, respectively. This material shows extremely promising properties for both supercapacitors and for encapsulating sulfur as a superior cathode material for high‐performance lithium–sulfur (Li‐S) batteries. At a current density of 0.5 A g?1, PNCNT presents a high specific capacitance of 210 F g?1, as well as excellent cycling stability at a current density of 2 A g?1. When the S/PNCNT composite was tested as the cathode material for Li‐S batteries, the initial discharge capacity was 1341 mAh g?1 at a current rate of 1 C and, even after 50 cycles at the same rate, the high reversible capacity was retained at 933 mAh g?1. The promising electrochemical energy‐storage performance of the PNCNTs can be attributed to their excellent conductivity, large surface area, nitrogen doping, and unique pore‐size distribution.  相似文献   

14.
Three‐dimensional (3D) nanometal films serving as current collectors have attracted much interest recently owing to their promising application in high‐performance supercapacitors. In the process of the electrochemical reaction, the 3D structure can provide a short diffusion path for fast ion transport, and the highly conductive nanometal may serve as a backbone for facile electron transfer. In this work, a novel polypyrrole (PPy) shell@3D‐Ni‐core composite is developed to enhance the electrochemical performance of conventional PPy. With the introduction of a Ni metal core, the as‐prepared material exhibits a high specific capacitance (726 F g?1 at a charge/discharge rate of 1 A g?1), good rate capability (a decay of 33 % in Csp with charge/discharge rates increasing from 1 to 20 A g?1), and high cycle stability (only a small decrease of 4.2 % in Csp after 1000 cycles at a scan rate of 100 mV s?1). Furthermore, an aqueous symmetric supercapacitor device is fabricated by using the as‐prepared composite as electrodes; the device demonstrates a high energy density (≈21.2 Wh kg?1) and superior long‐term cycle ability (only 4.4 % and 18.6 % loss in Csp after 2000 and 5000 cycles, respectively).  相似文献   

15.
A facile design and fabrication of self‐standing metal‐free polyaniline (PANI)@carbon nanotubes (CNTs) composite membrane was initially proposed by straightforward noncovalent wrapping the polymer around pure CNTs. Without introduction of extra heteroatoms into CNTs, the optimized PANI@CNTs composite exhibits a much better electrocatalytic performance for oxygen evolution reaction (OER) than pure CNTs via favorable interfacial modification with PANI to largely expose the active sites of on the surface of pure CNTs. Besides, it displays good oxygen reduction reaction (ORR) performance. When directly utilized as bifunctional air electrode without extra additive agents, the composite membrane‐enabled rechargeable Zn‐air batteries not only deliver a high peak power density (201.9 W g?1) and a large energy density (850.3 Wh kgZn?1), but also present robust cycling performance for 216 cycles with a high energy efficiency of 57.8%.  相似文献   

16.
A facile, one‐pot method for synthesizing spherical‐like metal sulfide–reduced graphene oxide (RGO) composite powders by spray pyrolysis is reported. The direct sulfidation of ZnO nanocrystals decorated on spherical‐like RGO powders resulted in ZnS–RGO composite powders. ZnS nanocrystals with a size below 20 nm were uniformly dispersed on spherical‐like RGO balls. The discharge capacities of the ZnS–RGO, ZnO–RGO, bare ZnS, and bare ZnO powders at a current density of 1000 mA g?1 after 300 cycles were 628, 476, 230, and 168 mA h g?1, respectively, and the corresponding capacity retentions measured after the first cycles were 93, 70, 40, and 21 %, respectively. The discharge capacity of the ZnS–RGO composite powders at a high current density of 4000 mA g?1 after 700 cycles was 437 mA h g?1. The structural stability of the highly conductive ZnS–RGO composite powders with ultrafine crystals during cycling resulted in excellent electrochemical properties.  相似文献   

17.
《化学:亚洲杂志》2017,12(1):36-40
N‐doped mesoporous carbon‐capped MoO2 nanobelts (designated as MoO2@NC) were synthesized and applied to lithium‐ion storage. Owing to the stable core–shell structural framework and conductive mesoporous carbon matrix, the as‐prepared MoO2@NC shows a high specific capacity of around 700 mA h g−1 at a current of 0.5 A g−1, excellent cycling stability up to 100 cycles, and superior rate performance. The N‐doped mesoporous carbon can greatly improve the conductivity and provide uninhibited conducting pathways for fast charge transfer and transport. Moreover, the core–shell structure improved the structural integrity, leading to a high stability during the cycling process. All of these merits make the MoO2@NC to be a suitable and promising material for lithium ion battery.  相似文献   

18.
Nitrogen‐doped mesoporous hollow carbon spheres (NHCS) consisting of hybridized amorphous and graphitic carbon were synthesized by chemical vapor deposition with pitch as raw material. Treatment with HNO3 vapor was performed to incorporate oxygen‐containing groups on NHCS, and the resulting NHCS‐O showed excellent rate capacity, high reversible capacity, and excellent cycling stability when tested as the anode material in lithium‐ion batteries. The NHCS‐O electrode maintained a reversible specific capacity of 616 mAh g?1 after 250 cycles at a current rate of 500 mA g?1, which is an increase of 113 % compared to the pristine hollow carbon spheres. In addition, the NHCS‐O electrode exhibited a reversible capacity of 503 mAh g?1 at a high current density of 1.5 A g?1. The superior electrochemical performance of NHCS‐O can be attributed to the hybrid structure, high N and O contents, and rich surface defects.  相似文献   

19.
A unique hierarchically nanostructured composite of iron oxide/carbon (Fe3O4/C) nanospheres‐doped three‐dimensional (3D) graphene aerogel has been fabricated by a one‐pot hydrothermal strategy. In this novel nanostructured composite aerogel, uniform Fe3O4 nanocrystals (5–10 nm) are individually embedded in carbon nanospheres (ca. 50 nm) forming a pomegranate‐like structure. The carbon matrix suppresses the aggregation of Fe3O4 nanocrystals, avoids direct exposure of the encapsulated Fe3O4 to the electrolyte, and buffers the volume expansion. Meanwhile, the interconnected 3D graphene aerogel further serves to reinforce the structure of the Fe3O4/C nanospheres and enhances the electrical conductivity of the overall electrode. Therefore, the carbon matrix and the interconnected graphene network entrap the Fe3O4 nanocrystals such that their electrochemical function is retained even after fracture. This novel hierarchical aerogel structure delivers a long‐term stability of 634 mA h g?1 over 1000 cycles at a high current density of 6 A g?1 (7 C), and an excellent rate capability of 413 mA h g?1 at 10 A g?1 (11 C), thus exhibiting great potential as an anode composite structure for durable high‐rate lithium‐ion batteries.  相似文献   

20.
In this paper we report the construction of a hollow microtubular triazine‐ and benzobisoxazole‐based covalent organic framework (COF) presenting a sponge‐like shell through a template‐free [3+2] condensation of the planar molecules 2,4,6‐tris(4‐formylphenyl)triazine (TPT‐3CHO) and 2,5‐diaminohydroquinone dihydrochloride (DAHQ‐2HCl). The synthesized COF exhibited extremely high crystallinity, a high surface area (ca. 1855 m2 g?1), and ultrahigh thermal stability. Interestingly, a time‐dependent study of the formation of the hollow microtubular COF having a sponge‐like shell revealed a transformation from initial ribbon‐like crystallites into a hollow tubular structure, and confirmed that the hollow nature of the synthesized COF was controlled by inside‐out Ostwald ripening, while the non‐interaction of the crystallites on the outer surface was responsible for the sponge‐like surface of the tubules. This COF exhibited significant supercapacitor performance: a high specific capacitance of 256 F g?1 at a current density of 0.5 A g?1, excellent cycling stability (98.8 % capacitance retention over 1850 cycles), and a high energy density of 43 Wh kg?1. Such hollow structural COFs with sponge‐like shells appear to have great potential for use as high‐performance supercapacitors in energy storage applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号