首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We calculate the dynamical spin structure factor of spin waves for weakly coupled stripes. At low energy, the spin-wave cone intensity is strongly peaked on the inner branches. As energy is increased, there is a saddlepoint followed by a square-shaped continuum rotated 45 degrees from the low energy peaks. This is reminiscent of recent high energy neutron scattering data on the cuprates. The similarity at high energy between this semiclassical treatment and quantum fluctuations in spin ladders may be attributed to the proximity of a quantum critical point with a small critical exponent eta.  相似文献   

2.
Motivated by inelastic neutron scattering data on Cs2CuCl4, we explore spin-1/2 triangular lattice antiferromagnets with both spatial and easy-plane exchange anisotropies, the latter due to an observed Dzyaloshinskii-Moriya interaction. Exploiting a duality mapping followed by a fermionization of the dual vortex degrees of freedom, we find a novel critical spin-liquid phase described in terms of Dirac fermions with an emergent global SU(4) symmetry minimally coupled to a noncompact U(1) gauge field. This "algebraic vortex liquid" supports gapless spin excitations and universal power-law correlations in the dynamical spin structure factor which are consistent with those observed in Cs2CuCl4. We suggest future neutron scattering experiments that should help distinguish between the algebraic vortex liquid and other spin liquids and quantum critical points previously proposed in the context of Cs2CuCl4.  相似文献   

3.
A critical analysis of the present-day concept of chaos in quantum systems as nothing but a “quantum signature” of chaos in classical mechanics is given. In contrast to the existing semi-intuitive guesses, a definition of classical and quantum chaos is proposed on the basis of the Liouville–Arnold theorem: a quantum chaotic system featuring N degrees of freedom should have M < N independent first integrals of motion (good quantum numbers) specified by the symmetry of the Hamiltonian of the system. Quantitative measures of quantum chaos that, in the classical limit, go over to the Lyapunov exponent and the classical stability parameter are proposed. The proposed criteria of quantum chaos are applied to solving standard problems of modern dynamical chaos theory.  相似文献   

4.
Systematic theoretical results for the effects of a dilute concentration of magnetic impurities on the thermodynamic and transport properties in the region around the quantum critical point of a ferromagnetic transition are obtained. In the quasiclassical regime, the dynamical spin fluctuations enhance the Kondo temperature. This energy scale decreases rapidly in the quantum fluctuation regime, where the properties are those of a line of critical points of the multichannel Kondo problem with the number of channels increasing as the critical point is approached, except at unattainably low temperatures where a single channel wins out.  相似文献   

5.
We show that the Hertz phi(4) theory of quantum criticality is incomplete as it misses anomalous nonlocal contributions to the interaction vertices. For antiferromagnetic quantum transitions, we found that the theory is renormalizable only if the dynamical exponent z=2. The upper critical dimension is still d=4 - z=2; however, the number of marginal vertices at d=2 is infinite. As a result, the theory has a finite anomalous exponent already at the upper critical dimension. We show that for d<2 the Gaussian fixed point splits into two non-Gaussian fixed points. For both fixed points, the dynamical exponent remains z=2.  相似文献   

6.
Antiferromagnetic heavy fermion metals close to their quantum critical points display a richness in their physical properties unanticipated by the traditional approach to quantum criticality, which describes the critical properties solely in terms of fluctuations of the order parameter. This has led to the question as to how the Kondo effect gets destroyed as the system undergoes a phase change. In one approach to the problem, Kondo lattice systems are studied through a self-consistent Bose-Fermi Kondo model within the extended dynamical mean field theory. The quantum phase transition of the Kondo lattice is thus mapped onto that of a sub-Ohmic Bose-Fermi Kondo model. In the present article we address some aspects of the failure of the standard order-parameter functional for the Kondo-destroying quantum critical point of the Bose-Fermi Kondo model.  相似文献   

7.
We investigate the transition to quantum chaos, induced by static imperfections, for an operating quantum computer that simulates efficiently a dynamical quantum system, the sawtooth map. For the different dynamical regimes of the map, we discuss the quantum chaos border induced by static imperfections by analyzing the statistical properties of the quantum computer eigenvalues. For small imperfection strengths the level spacing statistics is close to the case of quasi-integrable systems while above the border it is described by the random matrix theory. We have found that the border drops exponentially with the number of qubits, both in the ergodic and quasi-integrable dynamical regimes of the map characterized by a complex phase space structure. On the contrary, the regime with integrable map dynamics remains more stable against static imperfections since in this case the border drops only algebraically with the number of qubits. Received 19 June 2002 / Received in final form 30 September 2002 Published online 17 Decembre 2002 RID="a" ID="a"e-mail: dima@irsamc.ups-tlse.fr RID="b" ID="b"UMR 5626 du CNRS  相似文献   

8.
There has been great interest in recent years in quantum control landscapes. Given an objective J that depends on a control field ε the dynamical landscape is defined by the properties of the Hessian δ2J/δε2 at the critical points δJ/δε=0. We show that contrary to recent claims in the literature the dynamical control landscape can exhibit trapping behavior due to the existence of special critical points and illustrate this finding with an example of a 3-level Λ system. This observation can have profound implications for both theoretical and experimental quantum control studies.  相似文献   

9.
We report the first numerical identification of a locally quantum critical point at which the criticality of the local Kondo physics is embedded in that associated with a magnetic ordering. We are able to numerically access the quantum critical behavior by focusing on a Kondo-lattice model with Ising anisotropy. We also establish that the critical exponent for the q-dependent dynamical spin susceptibility is fractional and compares well with the experimental value for heavy fermions.  相似文献   

10.
We present a rigorous computation of the dynamical entropyh of the quantum Arnold cat map. This map, which describes a flow on the noncommutative two-dimensional torus, is a simple example of a quantum dynamical system with optimal mixing properties, characterized by Lyapunov exponents ± 1n +, + > 1. We show that, for all values of the quantum deformation parameter,h coincides with the positive Lyapunov exponent of the dynamics.  相似文献   

11.
This paper is devoted to a constructiveand critical analysis of the structure of certain dynamical systems from a group manifold point of view recently developed. This approach is especially suitable for discussing the structure of the quantum theory, the classical limit, the Hamilton-Jacobi theory and other problems such as the definition and globalization of the Poincaré-Cartan form which appears in the variational approach to higher order dynamical systems. At the same time, i t opens a way for the classification of all hamiltonian and lagrangian systems associated with suitably defined dynamical groups. Both classical and quantum dynamics are discussed, and examples of all the different structures appearingin the theory are provided, including a treatment of constrained and generalized higher order dynamical systems.  相似文献   

12.
In a magnetic field, spin-ladders undergo two zero-temperature phase transitions at the critical fields Hc1 and Hc2. An experimental review of static and dynamical properties of spin-ladders close to these critical points is presented. The scaling functions, universal to all quantum critical points in one-dimension, are extracted from (a) the thermodynamic quantities (magnetization) and (b) the dynamical functions (NMR relaxation). A simple mapping of strongly coupled spin ladders in a magnetic field on the exactly solvable XXZ model enables to make detailed fits and gives an overall understanding of a broad class of quantum magnets in their gapless phase (between Hc1 and Hc2). In this phase, the low temperature divergence of the NMR relaxation demonstrates its Luttinger liquid nature as well as the novel quantum critical regime at higher temperature. The general behavior close these quantum critical points can be tied to known models of quantum magnetism. Received: 13 March 1998 / Received in final form and Accepted: 21 July 1998  相似文献   

13.
The present study highlights some of the complexities observed in the dynamical properties of one-dimensional quantum spin systems. Exact results for zero-temperature dynamic correlation functions are presented for two contrasting situations:
  1. a system with a fully ordered ferromagnetic ground state;
  2. a system at aT c=0 critical point.
For both situations it is found that the exact results are considerably more complex than has been anticipated on the basis of approximate approaches which are considered to be appropriate and reliable for such situations. A still higher degree of complexity is expected for the dynamics of quantum spin systems which are nonintegrable. The paper concludes with some observations concerning nonintegrability effects and quantum chaos in spin systems.  相似文献   

14.
We investigate the competition of the Kondo and the RKKY interactions in heavy fermion systems. We solve a periodic Anderson model using extended dynamical mean field theory (EDMFT) with quantum Monte Carlo method. We monitor simultaneously the evolution of the electronic and magnetic properties. As the RKKY coupling increases the heavy fermion quasiparticle unbinds and a local moment forms. At a critical RKKY coupling there is an onset of magnetic order. Within EDMFT the two transitions occur at different points and the disappearance of the magnetism is not described by a local quantum critical point.  相似文献   

15.
A general scenario that leads to Coulomb quantum criticality with the dynamical critical exponent z = 1 is proposed. I point out that the long-range Coulomb interaction and quenched disorder have competing effects on z, and that balance between the two may lead to charged quantum critical points at which z = 1 exactly. This is illustrated with the calculation for the Josephson junction array Hamiltonian in dimensions D = 3 - epsilon. Precisely in D = 3, however, the above simple result breaks down, and z > 1. Relation to other studies is discussed.  相似文献   

16.
We consider a quantum impurity model in which a bosonic impurity level is coupled to a non-interacting bosonic bath, with the bosons at the impurity site subject to a local Coulomb repulsion U. Numerical renormalization group calculations for this bosonic single-impurity Anderson model reveal a zero-temperature phase diagram where Mott phases with reduced charge fluctuations are separated from a Bose-Einstein condensed phase by lines of quantum critical points. We discuss possible realizations of this model, such as atomic quantum dots in optical lattices. Furthermore, the bosonic single-impurity Anderson model appears as an effective impurity model in a dynamical mean-field theory of the Bose-Hubbard model.  相似文献   

17.
We consider the fluctuation conductivity in the critical region of a disorder induced quantum phase transition in layered d-wave superconductors. We specifically address the fluctuation contribution to the systems conductivity in the limit of large (quasi-two-dimensional system) and small (quasi-three-dimensional system) separation between adjacent layers of the system. Both in-plane and c-axis conductivities were discussed near the point of insulator-superconductor phase transition. The value of the dynamical critical exponent, z = 2, permits a perturbative treatment of this quantum phase transition under the renormalization group approach. We discuss our results for the system conductivities in the critical region as function of temperature and disorder.Received: 10 October 2003, Published online: 23 December 2003PACS: 74.40. + k Fluctuations (noise, chaos, nonequilibrium superconductivity, localization, etc.) - 73.43.Nq Quantum phase transitions  相似文献   

18.
We measure the spectral dimension of universes emerging from nonperturbative quantum gravity, defined through state sums of causal triangulated geometries. While four dimensional on large scales, the quantum universe appears two dimensional at short distances. We conclude that quantum gravity may be "self-renormalizing" at the Planck scale, by virtue of a mechanism of dynamical dimensional reduction.  相似文献   

19.
We model an isolated quantum computer as a two-dimensional lattice of qubits (spin halves) with fluctuations in individual qubit energies and residual short-range inter-qubit couplings. In the limit when fluctuations and couplings are small compared to the one-qubit energy spacing, the spectrum has a band structure and we study the quantum computer core (central band) with the highest density of states. Above a critical inter-qubit coupling strength, quantum chaos sets in, leading to quantum ergodicity of eigenstates in an isolated quantum computer. The onset of chaos results in the interaction induced dynamical thermalization and the occupation numbers well described by the Fermi-Dirac distribution. This thermalization destroys the noninteracting qubit structure and sets serious requirements for the quantum computer operability. Received 3 July 2001 and Received in final form 9 September 2001  相似文献   

20.
We show that partial dynamical symmetries can occur at critical points of quantum phase transitions, in which case underlying competing symmetries are conserved exactly by a subset of states, and mix strongly in other states. Several types of partial dynamical symmetries are demonstrated with the example of critical-point Hamiltonians for first- and second-order transitions in the framework of the interacting boson model, whose dynamical symmetries correspond to different shape phases in nuclei.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号