首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 558 毫秒
1.
The proton adsorption to a mixture of purified Aldrich humic acid (PAHA) and hematite is investigated. Basic insight into the charge adjustment process is obtained by using a self-consistent-field lattice theory for polyelectrolyte adsorption. The calculations indicate that upon adsorption the component with the highest initial charge density tends to induce charges on the other component. The number of induced charges can show a maximum when the surface charge and the charge of the segments in direct contact with the surface roughly balance each other. Experimentally, the humic acid-hematite system is investigated by proton titrations. The alterations in charge density caused by adsorption of PAHA to hematite are investigated by comparing the proton adsorption on the individual samples with that on their mixtures. Upon adsorption a part of the functional groups of humic acid forms complexes with some of the surface sites of hematite. This interaction reduces the proton binding to the humic acid at relatively low pH and it promotes the proton adsorption on the oxide surface at relatively high pH. Copyright 1999 Academic Press.  相似文献   

2.
Arsenate and methylated arsenicals, such as dimethylarsinate (DMA) and monomethylarsonate (MMA), are being found with increasing frequency in natural water systems. The mobility and bioavailability of these arsenic species in the environment are strongly influenced by their interactions with mineral surface, especially iron and aluminum oxides. Goethite (alpha-FeOOH), one of the most abundant ferric (hydr)oxides in natural systems, has a high retention capacity for arsenic species. Unfortunately, the sorption mechanism for the species is not completely understood, which limits our ability to model their behavior in natural systems. The purpose of this study is to investigate the effect of replacing a hydroxyl group with a methyl group on the adsorption behaviors of arsenic (V) species using adsorption edges, the influence of the background electrolyte on arsenic adsorption, and their effect on the zeta potential of goethite. The affinity of the three species to the goethite surface decreases in the order of AsO4=MMA>DMA. The uptake of DMA and MMA is independent of the concentration of background electrolyte, indicating that both species form inner-sphere complexes on the goethite surface and the most charge of adsorbed DMA and MMA locates at the surface plane. Arsenate uptake increases with increasing concentrations of background electrolyte at pH above 4, possibly due to that the charge of adsorbed arsenate is distributed between the surface plane and another electrostatic plane. DMA and lower concentrations of MMA have small effect on the zeta potential, whereas the zeta potential of goethite decreases in the presence of arsenate. The small effect on zeta potential of DMA or MMA adsorption suggests that the sorption sites for the anions is not important in controlling the surface charge. This observation is inconsistent with most adsorption models that postulate a singly coordinated hydroxyls contributing to both the adsorption and the surface charge, but supports the thesis that the charge on the goethite surface comes primarily from protonation of the triply bound oxygen atoms on the surface.  相似文献   

3.
In this paper, the LCD (ligand charge distribution) model is applied to describe the adsorption of (Tongbersven) humic acid (HA) to goethite. The model considers both electrostatic interactions and chemical binding between HA and goethite. The large size of HA particles limits their close access to the surface. Part of the adsorbed HA particles is located in the compact part at the goethite surface (Stern layers) and the rest in the less structured diffuse double layer (DDL). The model can describe the effects of pH, ionic strength, and loading on the adsorption. Compared to fulvic acid (FA), adsorption of HA is stronger and more pH- and ionic-strength-dependent. The larger number of reactive groups on each HA particle than on a FA particle results in the stronger HA adsorption observed. The stronger pH dependency in HA adsorption is related to the larger number of protons that are coadsorbed with HA due to the higher charge carried by a HA particle than by a FA particle. The positive ionic-strength dependency of HA adsorption can be explained by the conformational change of HA particles with ionic strength. At a higher ionic strength, the decrease of the particle size favors closer contact between the particles and the surface, leading to stronger competition with electrolyte ions for surface charge neutralization and therefore leading to more HA adsorption.  相似文献   

4.
The adsorption of carbonate on goethite has been evaluated, focussing on the relation between the structure of the surface complex and corresponding adsorption characteristics, like pH dependency and proton co-adsorption. The surface structure of adsorbed CO3(-2) has been assessed with (1) a reinterpretation of IR spectroscopy data, (2) determination of the charge distribution within the carbonate complex using surface complexation modeling, and (3) evaluation of the proton co-adsorption of various oxyanions, including carbonate, in relation with structural differences. Carbonate adsorption leads to a degeneration of the nu3 IR vibration. Currently, the magnitude of the Deltanu3 band splitting is used as a criterion for metal coordination. However, the interpretation is not unambiguous, since the magnitude of Deltanu3 is influenced by polarization and additional field effects, due to, e.g., H bonding. Our evaluation shows that for goethite the magnitude of band splitting Deltanu3 falls within the range of values that is representative for bidentate complex formation, despite contrarily assignments made in literature. Determination of the charge distribution (CD), derived by modeling available carbonate adsorption data, shows that a very large part (2/3) of the carbonate charge resides in the surface. Interpretation of this result with a bond valence and a ligand charge analysis strongly favors the bidentate surface complexation option for adsorbed carbonate. This option is also supported by the proton co-adsorption of carbonate. The H co-adsorption is very high, which corresponds closely to an oxyanion surface complex in which 2/3 of the ligands are common with the surface. The high H co-adsorption is in conflict with the monodentate option for adsorbed CO3(-2). The study shows that the H co-adsorption of CO3(-2) is almost equal to the experimental H co-adsorption obtained for SeO3(-2) adsorption, which can be rationalized supposing for both XO3(-2) complexes the same ligand distribution in the interface, i.e., bidentate complex formation.  相似文献   

5.
The double layer structure of metal (hydr)oxides is discussed. Charge separation may exist between the minimum distance of approach of electrolyte ions and the DDL domain. The corresponding capacitance value of the outer Stern layer is similar to the capacitance value of the inner Stern layer. The extended Stern model implicitly supports a hydration structure at the near-surface with some discrete layering of water and electrolyte ions. The significance of dipole orientation is analyzed theoretically. Dipole theory in combination with a calculated ion charge distribution is compared with the experimental overall charge distribution. Ion charge distribution for various oxyanions has been calculated applying the Brown bond valence concept to the geometry of surface complexes that have been optimized with MO/DFT calculations. The comparison is done in detail for silicic acid adsorption on goethite. In addition, results are discussed for arsenite, carbonate, sulfate, and phosphate, using the same approach. The dipole correction depends on the charge introduced in a neutral surface by ion adsorption, which differs for the various ions studied. The fractional correction factor phi derived for the experimental data agrees with the theoretical value phi(m)=0.17+/-0.02. On an absolute scale, the dipole corrections are usually limited to the range about 0-0.15 v.u. The CD values calculated with MO/DFT are not particularly sensitive (approximately 0.03 v.u.) to the precise Fe-octahedral geometry, which suggests that a calculated CD is a reasonable approximation in ion adsorption modeling for ill-defined Fe-oxides like HFO and natural Fe oxide materials of soils.  相似文献   

6.
Notwithstanding the great practical importance, still open are the questions how, why, and to what extent the size, morphology, and surface charge of metal (hydr)oxide nanoparticles (NPs) affect the adsorption form, adsorption strength, surface density, and packing order of organic (bio)molecules containing carboxylic groups. In this article, we conclusively answer these questions for a model system of ferric (hydr)oxide NPs and demonstrate applicability of the established relationships to manipulating their hydrophobicity and dispersibility. Employing in situ Fourier transform infrared (FTIR) spectroscopy and adsorption isotherm measurements, we study the interaction of 150, 38, and 9 nm hematite (α-Fe(2)O(3)) and ~4 nm 2-line ferrihydrite with sodium laurate (dodecanoate) in water. We discover that, independent of morphology, an increase in size of the ferric (hydr)oxide NPs significantly improves their adsorption capacity and affinity toward fatty acids. This effect favors the formation of bilayers, which in turn promotes dispersibility of the larger NPs in water. At the same time, the local order in self-assembled monolayer (SAM) strongly depends on the morphological compatibility of the NP facets with the geometry-driven well-packed arrangements of the hydrocarbon chains as well as on the ratio of the chemisorbed to the physically adsorbed carboxylate groups. Surprisingly, the geometrical constraints can be removed, and adsorption capacity can be increased by negatively polarizing the NPs due to promotion of the outer-sphere complexes of the fatty acid. We interpret these findings and discuss their implications for the nanotechnological applications of surface-functionalized metal (hydr)oxide NPs.  相似文献   

7.
We report a theoretical investigation of the adsorption of alkali metal atoms deposited on ultrathin oxide films. The properties of Li, Na, and K atoms adsorbed on SiO(2)/Mo(112) and of K on MgO / Ag(100) and TiO(2)/Pt(111) have been analyzed with particular attention to the induced changes in the work function of the system, Phi. On the nonreducible SiO(2) and MgO oxide films there is a net transfer of the outer ns electron of the alkali atom to the metal substrate conduction band; the resulting surface dipole substantially lowers Phi. The change in Phi depends (a) on the adsorption site (above the oxide film or at the interface) and (b) on the alkali metal coverage. Deposition of K on reducible TiO(2) oxide films results in adsorbed K(+) ions and in the formation of Ti(3+) ions. No charge transfer to the metal substrate is observed but also in this case the surface dipole resulting from the K-TiO(2) charge transfer has the effect to considerably reduce the work function of the system.  相似文献   

8.
The surface speciation of phosphate has been evaluated with surface complexation modeling using an interfacial charge distribution (CD) approach based on ion adsorption and ordering of interfacial water. In the CD model, the charge of adsorbed ions is distributed over two electrostatic potentials in the double-layer profile. The CD is related to the structure of the surface complex. A new approach is followed in which the CD values of the various surface complexes have been calculated theoretically from the geometries of the surface complexes. Molecular orbital calculations based on density functional theory (MO/DFT) have been used to optimize the structure of a series of hydrated surface complexes of phosphate. These theoretical CD values are corrected for dipole orientation effects. Data analysis of the PO4 adsorption, applying the independently derived CD coefficients, resolves the presence of two dominant surface species. A nonprotonated bidentate (B) complex is dominant over a broad range of pH values at low loading (< or =1.5 micromol/m(2)). For low pH and high loading, a strong contribution of a singly protonated monodentate (MH or MH-Na) complex is found, which differs from earlier interpretations. For the conditions studied, the doubly protonated bidentate (BH2) and monodentate (MH2) surface complexes and the nonprotonated monodentate (M) complex are not significant contributors. These findings are discussed qualitatively and quantitatively in relation to published experimental in-situ CIR-FTIR data and theoretical MO/DFT-IR information. The relative variation in the peak intensities as a function of pH and loading approximately agrees with the surface speciation calculated with the CD model. The model correctly predicts the proton co-adsorption of phosphate binding on goethite and the shift of the IEP at low phosphate loading (< or =1.5 micromol/m(2)). At higher loading, it deviates.  相似文献   

9.
Metal (hydr)oxides have different types of surface groups. Fluoride ions have been used as a probe to assess the number of surface sites. We have studied the F(-) adsorption on goethite by measuring the F(-) and H(+) interaction and F(-) adsorption isotherms. Fluoride ions exchange against singly coordinated surface hydroxyls at low F(-) concentrations. At higher concentrations also the doubly coordinated OH groups are involved. The replacement of a surface OH(-) by F(-) suggests that all F charge (-1) is located at the surface in contrast to oxyanions which have a charge distribution in the interface due to the binding structure in which the anion only partially coordinates with the surface. Analysis of our F(-) data with the CD-MUSIC approach shows that the formation of the fluoride surface complex is accompanied by a redistribution of charge. This is supposed to be due to a net switch in the H bonding as a result of the change of the type of surface complex from donating (FeOH, FeOH(2)) to proton accepting (FeF). The modeled redistribution of charge is approximately equivalent with the change of a donating H bond into an accepting H bond. At high F(-) concentrations precipitation of F(-), as for instance FeF(3)(s), may occur. The rate of formation is catalyzed by the presence of high electrolyte concentrations. Copyright 2000 Academic Press.  相似文献   

10.
It has been shown that the adsorption of ions at oxide/electrolyte interface should be treated in terms of adsorption on a heterogeneous solid surface. This is because the adsorption runs via formation of complexes with surface oxygen atoms. Because of the small degree of oxide surface organization, different surface oxygens may have different status with respect to electrostatic interactions and the strength of the chemical bonds formed between the surface oxygens and the adsorbed protons or metal ions. We have shown that the equations describing the equilibria of formation of surface complexes can be transformed to Langmuir-like equations for multicomponent adsorption. One can apply, therefore, for these systems theoretical methods used to describe mixed-gas adsorption on heterogeneous solid surfaces.  相似文献   

11.
The ionic strength dependence of humic acid (HA) adsorption on magnetite (Fe3O4) was investigated at pH 5, 8 and 9, where variable charged magnetite is positive, neutral and negative, respectively. The adsorption studies revealed that HA has high affinity to magnetite surface especially at lower pH, where interacting partners have opposite charges. However, in spite of electrostatic repulsion at pH 9 notable amounts of humate are adsorbed. Increasing ionic strength enhances HA adsorption at each pH due to charge screening. The dominant interaction is probably a ligand-exchange reaction, nevertheless the Coulombic contribution to the organic matter accumulation on oxide surface is also significant under acidic condition. The results from size exclusion chromatography demonstrate that the smaller size HA fractions enriched with functional groups are adsorbed preferentially on the surface of magnetite at pH 8 in dilute NaCl solution.  相似文献   

12.
Heterogeneous electrocatalysis typically involves charge transfer between surface active sites and adsorbed species. Therefore, modulating the surface charge state of an electrocatalyst can be used to enhance performance. A series of negatively charged transition‐metal (Fe, Co, Ni, Cu,and NiCo) phosphides were fabricated by designing strong electronic coupling with hydr(oxy)oxides formed in situ. Physicochemical characterizations, together with DFT computations, demonstrate that strong electronic coupling renders transition‐metal phosphides negatively charged. This facilitates destabilization of alkaline water adsorption and dissociation to result in significantly improved H2 evolution. Negatively charged Ni2P/nickel hydr(oxy)oxide for example exhibits a significantly low overpotential of 138 mV at 100 mA cm?2, superior to that without strong electronic coupling and also commercial Pt/C.  相似文献   

13.
A quartz crystal microbalance with dissipation (QCM-D) has been used to determine the adsorption rate of ampicillin-resistant linear and supercoiled plasmid DNA onto a silica surface coated with natural organic matter (NOM). The structure of the resulting adsorbed DNA layer was determined by analyzing the viscoelastic properties of the adsorbed DNA layers as they formed and were then exposed to solutions of different ionic composition. The QCM-D data were complemented by dynamic light scattering measurements of diffusion coefficients of the DNA molecules as a function of solution ionic composition. The obtained results suggest that electrostatic interactions control the adsorption and structural changes of the adsorbed plasmid DNA on the NOM-coated silica surface. The adsorption of DNA molecules to the NOM layer took place at moderately high monovalent (sodium) electrolyte concentrations. A sharp decrease in solution ionic strength did not result in the release of the adsorbed DNA, indicating that DNA adsorption on the NOM-coated silica surface is irreversible under the studied solution conditions. However, the decrease in electrolyte concentration influenced the structure of the adsorbed layer, causing the adsorbed DNA to adopt a less compact conformation. The linear and supercoiled DNA had similar adsorption rates, but the linear DNA formed a thicker and less compact adsorbed layer than the supercoiled DNA.  相似文献   

14.
Statistical mechanics has been used to derive a model for the charging of a spherical particle in a salt solution to complement our experimental studies and gain a deeper understanding of the processes involved in surface complexation. Our chosen model goes beyond the equilibrium constants and the Gouy-Chapmann theory currently used in surface complexation models. The proton adsorption is taken to occur at a harmonic potential well on the surface characterized by a frequency v and a well depth u(0). Outside the particle surface there is a capacitor layer of width w(c) which is impenetrable to the salt ions. The diffuse screening of the charged particle is described by a corrected Debye-Hückel analysis accounting for ion size in the ion-ion interactions. To account also for nonlinear electrostatic response a layer of condensed counterions has been introduced. The criterion for the onset of ion condensation is that the electrostatic field exceeds a linear response criterion. Ion size effects are accounted for in terms of hole-corrected electrostatic energies and excluded volume. The model has been applied to titrated surface charge data on goethite (alpha-FeOOH) at various background concentrations and good agreement between the experimental data and the model was obtained. Both the size of the screening ions and the central particle size were shown to be of importance for the surface charge.  相似文献   

15.
A long standing question in the study of supported clusters of metal atoms in the properties of metal–oxide interfaces is the extent of metal–oxide charge transfer. However, the determination of this charge transfer is far from straight forward and a combination of different methods (both experimental and theoretical) is required. In this paper, we systematically study the charging of some adsorbed transition metal atoms on two widely used metal oxides surfaces [α-Al2O3 (0001) and rutile TiO2 (110)]. Two procedures are combined to this end: the computed vibrational shift of the CO molecule, that is used as a probe, and the calculation of the atoms charges from a Bader analysis of the electron density of the systems under study. At difference from previous studies that directly compared the vibrational vawenumber of adsorbed CO with that of the gas phase molecule, we have validated the procedure by comparison of the computed CO stretching wavenumbers in isolated monocarbonyls (MCO) and their singly charged ions with experimental data for these species in rare gas matrices. It is found that the computational results correctly reproduce the experimental trend for the observed shift on the CO stretching mode but that care must be taken for negatively charged complexes as in this case there is a significative difference between the total charge of the MCO complex and the charge of the M atom. For the supported adatoms, our results show that while Cu and Ag atoms show a partial charge transfer to the Al2O3 surface, this is not the case for Au adatoms, that are basically neutral on the most stable adsorption site. Pd and Pt adatoms also show a significative amount of charge transfer to this surface. On the TiO2 surface our results allow an interpretation of previous contradictory data by showing that the adsorption of the probe molecule may repolarize the Au adatoms, that are basically neutral when isolated, and show the presence of highly charged Auδ+–CO complexes. The other two coinage metal atoms are found to significatively reduce the TiO2 surface. The combined use of the shift on the vibrational frequency of the CO molecule and the computation of the Bader charges shows to be an useful tool for the study the charge state of adsorbed transition metal atoms and allow to rationalize the information coming from complementary tools.  相似文献   

16.
Formation of inner- and outer-sphere complexes of environmentally important divalent ions on the goethite surface was examined by applying the charge distribution CD model for inner- and outer-sphere complexation. The model assumes spatial charge distribution between the surface (0-plane) and the next electrostatic plane (1-plane) for innersphere complexation and between the 1-plane and the head end of the diffuse double layer (2-plane) for the outersphere complexation. The latter approach has been used because the distance of closest approach to a charged surface may differ for different ions. The surface structural approach implies the use of a Three-Plane model for the compact part (Stern layer) of solid-solution interface, which is divided into two layers. The thickness of each layer depends on the capacitance and the local dielectric constant. The new approach has been applied to describe the adsorption of magnesium, calcium, strontium, and sulfate ions. It is shown that the concept can successfully describe the development of surface charge in the presence of Ca(+2), Mg(+2), Sr(+2), and SO4(-2) as a function of loading, pH, and salt level, and also the shift in the isoelectric point (IEP) of goethite. The CD modeling revealed that, for the conditions studied, magnesium is mainly adsorbed as a bidentate innersphere complex, calcium can be a combination of bidentate innersphere and a monodentate inner- or outer-sphere complexes, and strontium is probably adsorbed as an outersphere complex. Sulfate is present as a mixture of inner- and outer-sphere monodentate complexes. Outersphere complexation is less pH dependent than innersphere complexation. The CD model predicts that the outersphere complexation of divalent cations and anions is relatively favorable at respectively low and high pH. Increase of ion loading favors the formation of innersphere complexes.  相似文献   

17.
18.
采用傅里叶变换红外(FT-IR)光谱、X射线光电子能谱(XPS)以及基于周期平面波的密度泛函理论(DFT)分别研究了水杨酸钠在针铁矿或赤铁矿表面上的吸附结构,并将计算得到的光电子能谱移动(CLS)和电荷转移与实验得到的XPS结果进行对比。FT-IR结果表明,水杨酸钠可能以双齿双核(V)和双齿单核(IV)的形式分别吸附于针铁矿或赤铁矿表面。由DFT计算结果可知,水杨酸钠在针铁矿(101)晶面上形成双齿双核化合物(V)的吸附能为-5.46 eV。而水杨酸钠在针铁矿(101)晶面上形成双齿单核化合物(IV)的吸附能为3.80 eV,因此水杨酸钠在针铁矿上基本不以双齿单核化合物(IV)构型存在。水杨酸钠在赤铁矿(001)晶面上形成双齿单核化合物(IV)时吸附能为-4.07 eV,说明水杨酸钠在赤铁矿(001)晶面上形成了双齿单核化合物(IV)。另外,理论计算的针铁矿(101)晶面上吸附位点铁原子的Fe 2p的CLS值(-0.68 eV)与实验观察到的Fe 2p的CLS值(-0.5 eV)吻合。理论计算的赤铁矿(001)晶面上吸附位点铁原子的Fe 2p的CLS值(-0.80 eV)与实验观察到的Fe 2p的CLS值(-0.8 eV)吻合。因此,水杨酸钠吸附在针铁矿表面时能够通过羧酸基团上一个氧原子和酚羟基上的氧原子与针铁矿(101)表面上的两个铁原子形成双齿双核(V)结构,而在赤铁矿(001)表面上,水杨酸钠中羧酸基团上一个氧原子和酚羟基上的氧原子与赤铁矿(001)表面上的一个铁原子形成了双齿单核(IV)结构。  相似文献   

19.
The adsorption of sodium acetohydroxamate on the goethite or hematite surface was investi-gated by Fourier transform infrared spectroscopy (FT-IR), X-ray photoemission spectroscopy and periodic plane-wave density functional theory (DFT) calculations. The core-level shifts and charge transfers of the adsorbed surface iron sites calculated by DFT with periodic in-terfacial structures were confronted to the X-ray photoemission experiments. FT-IR results reveal that the interfacial structure of sodium acetohydroxamate adsorbed on the goethite or hematite surface may be assigned to a ve-membered ring complex. In agreement with the adsorption energies determined by the DFT calculations, a ve-membered ring complex is formed via bonding of one surface iron atom of goethite (101) or (100) to both oxygen atoms of hydroxamate group, and these two oxygen atoms of the hydroxamate group correspond-ingly attach to two neighboring iron atoms of the goethite surface. But a ve-membered ring complex between two oxygen atoms of the hydroxamate group and one surface iron atom of hematite (001) is formed without any extra attachments. The calculated core-level shifts of Fe2p for the interfacial structures are correspondingly in good agreement with the experimental observed one, which con rmed the reliability of the calculated results.  相似文献   

20.
Competitive adsorption is the usual situation in real applications, and it is of critical importance in determining the overall performance of an adsorbent. In this study, the competitive adsorption characteristics of all the combinations of binary mixtures of aqueous metal ion species Ca2+(aq), Cd2+(aq), Pb2+(aq), and Hg2+(aq) on a functionalized activated carbon were investigated. The porous structure of the functionalized active carbon was characterized using N2 (77 K) and CO2 (273 K) adsorption. The surface group characteristics were examined by temperature-programmed desorption, Fourier transform infrared spectroscopy, Raman spectroscopy, acid/base titrations, and measurement of the point of zero charge (pHpzc). The adsorption of aqueous metal ion species, M2+(aq), on acidic oxygen functional group sites mainly involves an ion exchange mechanism. The ratios of protons displaced to the amount of M2+(aq) metal species adsorbed have a linear relationship for both single-ion and binary mixtures of these species. Hydrolysis of metal species in solution may affect the adsorption, and this is the case for adsorption of Hg2+(aq) and Pb2+(aq). Competitive adsorption decreases the amounts of individual metal ions adsorbed, but the maximum amounts adsorbed still follow the order Hg2+(aq) > Pb2+(aq) > Cd2+(aq) > Ca2+(aq) obtained for single metal ion adsorption. The adsorption isotherms for single metal ion species were used to develop a model for competitive adsorption in binary mixtures, involving exchange of ions in solution with surface proton sites and adsorbed metal ions, with the species having different accessibilities to the porous structure. The model was validated against the experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号