首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 587 毫秒
1.
In this paper the integrals fmv(τ) = ∝0exp[?(t + τ)]tv(ln t)m(t + τ)?1 dt andgmv(τ) = ∝0exp[? ¦ ? τ ¦]tv(ln t)m(t ? τ)?1 dt are investigated for positive real values of the variable τ. Here, m is a nonnegative integer, v is a complex variable with Re(v) > ?1. Both integrals are related to the complex integral Φ(z) = ∝0exp[?(t ? z)]t?γ(ln t)m(t ? z)?1dt with 0 ? Re(γ) < 1, the behavior of which is analyzed in detail. The results are applied to obtain asymptotic representations for fmn(τ) and gmn(τ), m and n both nonnegative integers, near τ = 0. The latter integrals play a role in the study of the equations of neutron transport and radiative transfer.  相似文献   

2.
It is shown that the compositional inverse of either of two transformations of a given series can be determined from the compositional inverse of the series. Specifically, if t · f(t) and t · g(t) are compositional inverses, then so are t · fk(t) and t · gk1(t), where fk(t) is the kth Euler transformation of f(t) and gk1(t) = g(t)(1 ? kt · g(t)).  相似文献   

3.
Let m and vt, 0 ? t ? 2π be measures on T = [0, 2π] with m smooth. Consider the direct integral H = ⊕L2(vt) dm(t) and the operator (L?)(t, λ) = e?iλ?(t, λ) ? 2e?iλtT ?(s, x) e(s, t) dvs(x) dm(s) on H, where e(s, t) = exp ∫stTdvλ(θ) dm(λ). Let μt be the measure defined by T?(x) dμt(x) = ∫0tT ?(x) dvs dm(s) for all continuous ?, and let ?t(z) = exp[?∫ (e + z)(e ? z)?1t(gq)]. Call {vt} regular iff for all t, ¦?t(e)¦ = ¦?(e for 1 a.e.  相似文献   

4.
Starting from a defining differential equation (??t) W(λ, t, u) = (λ(u ? t)p(t)) W(λ, t, u) of the kernel of an exponential operator Sλ(?, t) = ∫?∞ W(λ, t, u)?(u) du with normalization ∫?∞W(λ, t, u) du = 1, we determine Sλ for various p(t) including; for example, p(t) a quadratic polynomial, all the known exponential operators are recovered and some new ones are constructed. It is shown that all the exponential operators are approximation operators. Further approximation properties of these operators are discussed. For example, functions satisfying ∥ Sλ(?, t) ? ?(t)∥ = O(λ) are characterized. Several results of C. P. May are also improved.  相似文献   

5.
According to a result of A. Ghizzetti, for any solution y(t) of the differential equation where y(n)(t)+ i=0n?1 gi(t) yi(t)=0 (t ? 1), 1 ¦gi(x)¦xn?I?1 dx < ∞ (0 ?i ? n ?1, either y(t) = 0 for t ? 1 or there is an integer r with 0 ? r ? n ? 1 such that limt → ∞ y(t)tr exists and ≠0. Related results are obtained for difference and differential inequalities. A special case of the former has interesting applications in the study of orthogonal polynomials.  相似文献   

6.
For a formal power series g(t) = 1[1 + ∑n=1hntn] with nonnegative integer coefficients, the compositional inverse f(t) = t · f(t) of g(t) = t · g(t) is shown to be the generating function for the colored planted plane trees in which each vertex of degree i + 1 is colored one of hi colors. Since the compositional inverse of the Euler transformation of f(t) is the star transformation [[g(t)]?1 ? 1]?1 of g(t), [2], it follows that the Euler transformation of f(t) is the generating function for the colored planted plane trees in which each internal vertex of degree i + 1 is colored one of hi colors for i > 1, and h1 ? 1 colors for i = 1.  相似文献   

7.
We study the nonlinear Volterra equation u′(t) + Bu(t) + ∫0t a(t ? s) Au(s) ds ? F(t) (0 < t < ∞) (′ = ddt), u(0) = u0, (1) as well as the corresponding problem with infinite delay u′(t) + Bu(t) + ∫?∞t a(t ? s) Au(s) ds ? ?(t) (0 < t < ∞), u(t) = h(t) (?∞ < t ? 0). (7) Under various assumptions on the nonlinear operators A, B and on the given functions a, F, f, h existence theorems are obtained for (1) and (7, followed by results concerning boundedness and asymptotic behaviour of solutions on (0 ? < ∞); two applications of the theory to problems of nonlinear heat flow with “infinite memory” are also discussed.  相似文献   

8.
For nonlinear retarded differential equations y2n(t)?i=1mfi(t,y(t),y(gi(t)))=0 and yn(t)?i=1mPi(t)Fi(y(gi(t)))=h(t), the sufficient conditions are given on fi, pi, Fi, and h under which every bounded nonoscillatory solution of (1) or (7) tends to zero as t → ∞.  相似文献   

9.
Analyticity in t of solutions u(t) of nonlinear evolution equations of the form u′ + A(t, u)u = ?(t, u), t > 0, u(0) = u0, is established under suitable conditions on A(t, u), ?(t, u), and u0. An application is given to quasilinear parabolic equations.  相似文献   

10.
Given a cocycle a(t) of a unitary group {U1}, ?∞ < t < ∞, on a Hilbert space H, such that a(t) is of bounded variation on [O, T] for every T > O, a(t) is decomposed as a(t) = f;t0Usxds + β(t) for a unique x ? H, β(t) yielding a vector measure singular with respect to Lebesgue measure. The variance is defined as σ2({rmUt}, a(t)) = limT→∞(1T)∥∝t0 Us x ds∥2 if existing. For a stationary diffusion process on R1, with Ω1, the space of paths which are natural extensions backwards in time, of paths confined to one nonsingular interval J of positive recurrent type, an information function I(ω) is defined on Ω1, based on the paths restricted to the time interval [0, 1]. It is shown that I(Ω) is continuous and bounded on Ω1. The shift τt, defines a unitary representation {Ut}. Assuming Ω1 I dm = 0, dm being the stationary measure defined by the transition probabilities and the invariant measure on J, I(Ω) has a C spectral density function f;. It is then shown that σ2({Ut}, I) = f;(O).  相似文献   

11.
In a recent paper [3] the authors derived maximum principles which involved u(x) and q = ¦grad, where u(x) is a classical solution of an alliptic differential equation of the form (g(q2)u,i),i + ?(u) ?(q2) = 0. In this paper these results are extended to the more general case in which g = g(u, q2) and ?(u) ?(q2) is replaced by h(u, q2).  相似文献   

12.
The operator L?(t, λ) = e?iλ(t, λ) ? 2e?iλtT?(s, x) e(s, t) dvs(x) dm(s) acting on H=∝02πL2(vt), where m and vt, 0 ? t ? 2π are measures on [0, 2π] with m smooth and e(s, t) = exp[?∝tsTdvλ(θ) dm(λ)], satisfies rank(I ? LL1) = rank(I ? L1L) = 1. It is, therefore, unitarily equivalent to a scalar Sz.-Nagy-Foia? canonical model. The purpose of this paper is to determine the model explicitly and to give a formula for the unitary equivalence.  相似文献   

13.
14.
This paper presents some comparison theorems on the oscillatory behavior of solutions of second-order functional differential equations. Here we state one of the main results in a simplified form: Let q, τ1, τ2 be nonnegative continuous functions on (0, ∞) such that τ1 ? τ2 is a bounded function on [1, ∞) and t ? τ1(t) → ∞ if t → ∞. Then y?(t) + q(t) y(t ? τ1(t)) = 0 is oscillatory if and only if y?(t) + q(t) y(t ? τ2(t)) = 0 is oscillatory.  相似文献   

15.
The message m = {m(t)} is a Gaussian process that is to be transmitted through the white Gaussian channel with feedback: Y(t) = ∫0tF(s, Y0s, m)ds + W(t). Under the average power constraint, E[F2(s, Y0s, m)] ≤ P0, we construct causally the optimal coding, in the sense that the mutual information It(m, Y) between the message m and the channel output Y (up to t) is maximized. The optimal coding is presented by Y(t) = ∫0t A(s)[m(s) ? m?(s)] ds + W(t), where m?(s) = E[m(s) ¦ Y(u), 0 ≤ u ≤ s] and A(s) is a positive function such that A2(s) E |m(s) ? m?(s)|2 = P0.  相似文献   

16.
Results on partition of energy and on energy decay are derived for solutions of the Cauchy problem ?u?t + ∑j = 1n Aj?u?xj = 0, u(0, x) = ?(x). Here the Aj's are constant, k × k Hermitian matrices, x = (x1,…, xn), t represents time, and u = u(t, x) is a k-vector. It is shown that the energy of Mu approaches a limit EM(?) as ¦ t ¦ → ∞, where M is an arbitrary matrix; that there exists a sufficiently large subspace of data ?, which is invariant under the solution group U0(t) and such that U0(t)? = 0 for ¦ x ¦ ? a ¦ t ¦ ? R, a and R depending on ? and that the local energy of nonstatic solutions decays as ¦ t ¦ → ∞. More refined results on energy decay are also given and the existence of wave operators is established, considering a perturbed equation E(x) ?u?t + ∑j = 1n Aj?u?xj = 0, where ¦ E(x) ? I ¦ = O(¦ x ¦?1 ? ?) at infinity.  相似文献   

17.
Let {Xn}n≥1 be a sequence of independent and identically distributed random variables. For each integer n ≥ 1 and positive constants r, t, and ?, let Sn = Σj=1nXj and E{N(r, t, ?)} = Σn=1 nr?2P{|Sn| > ?nrt}. In this paper, we prove that (1) lim?→0+?α(r?1)E{N(r, t, ?)} = K(r, t) if E(X1) = 0, Var(X1) = 1, and E(| X1 |t) < ∞, where 2 ≤ t < 2r ≤ 2t, K(r, t) = {2α(r?1)2Γ((1 + α(r ? 1))2)}{(r ? 1) Γ(12)}, and α = 2t(2r ? t); (2) lim?→0+G(t, ?)H(t, ?) = 0 if 2 < t < 4, E(X1) = 0, Var(X1) > 0, and E(|X1|t) < ∞, where G(t, ?) = E{N(t, t, ?)} = Σn=1nt?2P{| Sn | > ?n} → ∞ as ? → 0+ and H(t, ?) = E{N(t, t, ?)} = Σn=1 nt?2P{| Sn | > ?n2t} → ∞ as ? → 0+, i.e., H(t, ?) goes to infinity much faster than G(t, ?) as ? → 0+ if 2 < t < 4, E(X1) = 0, Var(X1) > 0, and E(| X1 |t) < ∞. Our results provide us with a much better and deeper understanding of the tail probability of a distribution.  相似文献   

18.
19.
A theory of scattering for the time dependent evolution equations dudt = iHj(t)u, j = 0, 1 (1) is developed. The wave operators are defined in terms of the evolution operators Uj(t, s), which govern (1). The scattering operator remains unitary. Sufficient conditions for existence and completeness of the wave operators are obtained; these are the main results. General properties, such as the chain rule and various intertwining relations, are also established. Applications include potential scattering (H0(t) = ?Δ, Δ denoting the Laplacian, and H1(t) = ?Δ + q(t, ·)) and scattering for second-order differential operators with coefficients constant in the spatial variable (Hj(t) = ∑m, k = 1n amk(j)(t)(?2?xm ?xk) + bj(t) for j = 0, 1).  相似文献   

20.
Let {Xt, t ≥ 0} be Brownian motion in Rd (d ≥ 1). Let D be a bounded domain in Rd with C2 boundary, ?D, and let q be a continuous (if d = 1), Hölder continuous (if d ≥ 2) function in D?. If the Feynman-Kac “gauge” Ex{exp(∝0τDq(Xt)dt)1A(XτD)}, where τD is the first exit time from D, is finite for some non-empty open set A on ?D and some x?D, then for any ? ? C0(?D), φ(x) = Ex{exp(∝0τDq(Xt)dt)?(XτD)} is the unique solution in C2(D) ∩ C0(D?) of the Schrödinger boundary value problem (12Δ + q)φ = 0 in D, φ = ? on ?D.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号